Propagating Ultrasound Energy
Through a Catheter Around Bends

For Treatment of Acute Ischemic Stroke

April 14th, 2010




« 3" | eading cause of death in the
United States (=150,000)

* #1 cause of major adult disability

« Estimated $65 billion in annual
direct and indirect costs in the US
alone.

— Largest cost contributors are hospital costs, at
home nursing, and lost productivity.

American Heart Association. Heart Disease and Stroke Statistics — 2008 Update. Dallas, Texas:
American Heart Association; 2008. ©2008, American Heart Association

(Parcemage Breakdown of Deaths From
Cardiovascular Diseases
United States: 2004 (Final)

Other 14% Coronary Heart
: Disease 52%

Diseases of
the Arteries 4%

High Blood
Pressure 6%

Source: COG/NCHS.
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Second largest contributor to deaths
caused by cardiovascular diseases.




* 13% of strokes are hemorrhagic
— Not the focus of this presentation

— Bleeding in and around the brain

— Most interventional treatments in the neurovascular system are
focused around aneurysms, one cause of some hemorrhagic

strokes.

« 87% of strokes are ischemic (insufficient oxygenation)

— Decreased blood flow to a region of the brain causing various cell
death mechanisms

— Few treatment options

* Transient ischemic attacks (TIA)
— Temporary blockages resulting in no apparent neurological deficit.

— Not a stroke

American Heart Association. Heart Disease and Stroke Statistics — 2008 Update. Dallas, Texas:
American Heart Association; 2008. ©2008, American Heart Association



Time is Brain!
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Cells die almost immediately

« Cells continue to die through several different pathways
long after symptom onset

Gonzalez, R.G., Hirsch, J.A., Koroshetz, W.J., Lev, M.H., Schaefer, P., Acute Ischemic Stroke Imaging and Intervention. ©2006
Springer-Verlag Berlin Heidelberg, Germany
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This Is brain that can be saved!
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Springer-Verlag Berlin Heidelberg, Germany
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Converts longitudinal vibration generated by the transducer to transverse
motion in the Wire’'s Active Zone
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. A1 and A2 are longifudinal amplitudes
« A3z a fransverse amplitude






Acute animal study with Ajay Wakhloo & Matt Gounis

(Dec 21, 2006)

Feasibility efficacy test in porcine model

Ascending Pharyngeal TIMI O Flow After Activation of the OMT TIMI 3 Flow Restored
Artery (APA) Pre-Test Injection of Autologous Wire; Tip of Active Section  After Activation of the
Clot in the APA (Arrow) and Microcatheter OMT Wire for <3 Minutes
(Open Arrow)
Autologous clot injected into Ascending Pharyngeal Artery (APA) “Free Tip”
Completely occlude 4-5cm length of APA Catpeter  Waveguide

156cm long waveguide; .004” @ Active Section; “Free Tip”

Achieve nearly complete re-canalization of APA in minutes




 Goal:

— Transmit energy, sufficient to emulsify clot,
through tortuosity representative of the
neurovascular anatomy

* Approach:

— Develop a data driven understand of how
acoustic waves travel around bends

— Experimentally identify controllable parameters
In our system that have a BIG IMPACT on
transmission




* |If bend is small enough:
— Wave will reflect

— Reflections from bend = Reduced
Transmission

:Reflecfed Wionve from Bend
L -
Bend Size

» Reflected Wave Amplitude Increcses Decrecses
e A2 affer the bend decreases
« A3 presumably decrecses
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Transducer

Wave driven / m“
from transducer

Active

Section

«No significant reflections m“ “hocomocond
*Energy transmission is

*Not attenuated by bend
°Independent of bend location

Wave driven / ‘Q/'

Wave reflected
from transducer

from bend

-Reflections are significant ‘g/' DR

*Energy transmission is
*Attenuated by bend
*Dependent on bend location

No reflections above CBD

Critical Bend Diameter
(CBD)

v

As Bend @ decreases:
Reflections get worse




« Transducer/Generator response to different waveguide bend
configurations:

— Single Bend Pullbacks
— Double Bend Pullbacks

* Observe the longitudinal wave itself:
— Single Bend Longitudinal wave Transmission (Laser)
— Big Impact parameter identification



* Non-contact measurement

activ zone/ Catheter

Waveguide

Axial Cross Sectional View
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Measure acoustic waves in the transducer
and waveguide proximal to the active zone
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Pullback executed with the

/ proximal bend fixed in a high or
low power location

All observations from single bend pullbacks are present and further compounded with two bends

If a bend is present in the waveguide which is both:
— Atorbelow CBD
— In a low power location

Then the power supply does not respond to changes in impedance or load if they occur distal to the
bend.

It seems that in the anatomy for stroke, the tightest bends tend to be the most distal (good)






 What does the actual wave look like before and after a
bend?

« What happens to the wave in different bend
configurations?

Then...

« What effect do we have on transmission by changing
drive amplitude (A1) and waveguide diameter (some
simple controls)?



Bend fixed in High or
Low power location
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Experimental Setup Amplitude “Maps”

Distal 8 cm measurement zone

Branson 40 kHz
Transducer

Move laser to
discrete locations on
the waveguide and
measure wave

amplitude

| Waveguide &
Catheter

A2 After the Bend
N\ 2 el

(o

A2 Befor?ﬁe Bend

. Variables
— Bend Size
—  Bend Location (fixed in high or low power)
—  Waveguide Diameter
—  Drive Amplitude

. Measures

—  Amplitude “Maps” were taken of the proximal wave and
distal wave directly off of the waveguide with the laser
vibrometer

—  Generator Electrical Response to configuration

2.0” Bend

Constant waveguide diameter throughout bend and measurement zones



2 Inch Bend
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A2 After the Bend
A/ (Distal waveguide Amplitude)
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Bend Diameter (in) = A1- Drive Amplitude = 5um

As Bend o Decreases to or below the Critical Bend Diameter (CBD):
— A2 After the Bend generally decreases
— Low power bend locations have smaller A2 after the bend than high power locations
— The difference between A2 after the bend for high power locations and low power locations increases



40 kHz system was sufficient to
prove basic feasibility:
— System can transmit effective acoustic energy

over a longer waveguide with a thin active
section for neurovascular applications

 But...

— Cannot transmit sufficiently through clinically
relevant tortuosity (i.e., carotid siphon)

The solution is to increase the frequency of
the system!

<1/4” Carotid Siphon

A

http://www.neuropat.dote.hu/table/angio.htm




HIGHER DRIVE
FREQUENCY

The theory begins with the relationship between
Critical Bend Diameter (CBD) and Wavelength (A)...



Reflected Wave A
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5.5 7
5.0 1

4.5

 We want to pick a A that yields:

Target CBD = 1/8” (For Stroke)

So that any bend above that diameter is transparent to the wave...

Critical Bend Diameter asa Function of Wavelength

y (CBD)=0.4134x (lambda)
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F = 40 kHz F = 80 kHz
A =12.30 cm Double Frequency A=6.15cm
>

¢ =491600 cm/s ¢ =491600 cm/s

Half A
(Inversely B oo- - )\= /

c = spfed of sound

< #91600 cm/s in N Titanium
A - elength (longitudipal in this case)
Y = FreqBNCY (TransduceNDrive Fregué




Transducer

Wave driven / m“
from transducer

Active

Section

«No significant reflections m“ “hocomocond
*Energy transmission is

*Not attenuated by bend
°Independent of bend location

Wave driven / ‘Q/'

Wave reflected
from transducer

from bend

-Reflections are significant ‘g/' DR

*Energy transmission is
*Attenuated by bend
*Dependent on bend location

No reflections above CBD

Critical Bend Diameter
(CBD)

v

As Bend @ decreases:
Reflections get worse




Pullbacks: lIdentifying Critical Bend Diameter

e )

CBD was marked by periodic audible & visible (active section movement) changes
 Measures

— Generator Electrical Response
— A1 (Laser)

— Periodic audible and visible changes during
pullback

 Variables:
— Bend Diameter (37, 2" 1.5, 17, .757, .57, .25")



Critical Bend Diameter as a Function of Driving Frequency
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* Leszek Filipczynski, Propagation of Ultrasonic Waves in Spirals. Warsaw, Poland, 1962.




