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Aim
« To give a general overview of ultrasound
propagation covering:
— Basics
— Linear propagation
— Interfaces
— Diffraction

— Nonlinear propagation
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Basics




Propagation of Acoustic Disturbances
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Propagation of Acoustic Disturbances
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Basic Physical Characteristics
e In fluids only Acoustic Longitudinal Wave
longitudinal

ultrasound waves

propagate

..........

e Displacement of -
media is in direction
of propagation
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Sound Pressure

 Soft tissues have very
low shear modulus
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Basic Parameters

«Particle velocity U=1U X+1u j} +u z

4 X y z
«Total pressure

P T
«Total density

Pr

When no sound is present:
u =0 Pr = Po I = F,

With an acoustic wave:

U pT:pO+p\ /

Acoustic component
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Basic Equations

The acoustic wave equation is obtained by combining three equations:
1. The Continuity Equation (Conservation of Mass);
2. The Force Equation (Conservation of Momentum);

3. The Equation of State.
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The One Dimensional Wave Equation

Linearize these equations by assuming that u << ¢, and
p <<p,. Also use fact that p, doesn’t vary in space or
time

Can then derive the Wave Equation in 1-D:

For a plane wave:

P = Pyl

The product of equilibrium density p, and speed of sound c, is known at the
characteristic acoustic impedance Z.
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« Consider two cases of a single frequency wave:

— An airborne ultrasonic source producing a signal at 137 dB
re 20 uPa;

— A 3.5 MHz ultrasonic imaging system producing 5 MPa at

Vibration Research

focus.
Pressure Frequency | Medium | Displacement | Velocity | Acceleration
Amplitude /MHz Amplitude | Amplitude | Amplitude
/MPa i /ms’! /ms2
0.0002 0.04 Air 1.9 x10° 4.9x10"! |.2x10%>
5 3.5 Water |.5x10~7 3.3 7.3x10%7
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Acoustic Intensity

The average rate of flow of energy through a unit area normal to
direction of propagation. T p

2 pycy

/

- Strictly for plane waves. P is acoustic pressure amplitude.

- Differences will occur in fields where the particle velocity and pressure are
not in phase, but this is not normally significant.

- For pulsed waveforms need to allow for the mark-to-space ratio in
calculating the time averaged intensity /;,
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Intertaces




Interfaces

« At a boundary between two
fluid media some of the
energy will be transmitted
and some reflected

e The extent of transmission
depends on

— Relative characteristic
acoustic impedance of
media

— Angle of incidence
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D
R <=

Z Z,

> [

e.g. for normal incidence the
Amplitude Transmission and
Reflection coefficients are given

by

2 R= (ZZ_ZI)
(1+ZI/ZZ) (ZZ+ZI)

- Note that in going from a low impedance material to high impedance the pressure

may increase (but the displacement decrease)!
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Interfaces

« At a boundary between high and low impedance materials
(Z, >> Z,) the reflected pressure wave is inverted.

« For asymmetric waveforms (such as those generated by

nonlinearity) this can turn a high amplitude compression in
to a high amplitude tension.




Mode Conversion

Southampton

Institute of Sound and
Vibration Research

« At a boundary between a fluid and solid it is possible to

excite shear waves and surface waves

*y, -
Animations courtesy of Dr. Dan Russell, Kettering University

©®1999, Damiel A. Russell
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Transducer Fields




Near Field and Far Field of a Planar Source

Can consider that the field of a planar ultrasonic
source can be divided in to two regions:

2a ] Near field Far field

Simplest model: in the near field the
propagation is planar (and collimated)
while in the far field it is spherically
spreading.

Transition can be
considered to
occur at the
Rayleigh Distance
R,where for a
circular source of
radius a:
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Diftraction
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The Radiated Field: The Rayleigh Integra

e The total complex pressure
generated by a vibrating source can
be evaluated by integrating over the
contributions due to all the surface
elements.

. The RAYLEIGH INTEGRAL jopUe ™

7A)

p(¥)=[dp(x) = |

« which in principle enables the S S 2zr
calculation of the sound field
produced by any distribution of
complex normal velocity U of an
otherwise rigid infinite plane

boundary.
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Near Field of a Circular Piston Radiator

1.5

Transducer
radius

Transducer
axis of
symmetry

2.5 3

The minimum beam diameter is only ~1/4 transducer diameter
(measured at -3 dB level).
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Focusing

In order to produce a narrower beam focus the ultrasound field:

Focal plane

/

Focal length D

2a

Geometric focus

2
7Ta

R,
The amplitude gain G is given by: G = B B 1D



Focused Circular Piston

Weak: 0<G<2
Medium: 2<G<2n

Strong: 2n< G

At geometric focus:

-3 dB beam full width in
focal plane:
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Axial variation:

D sin X
z X

p(z) = p,G

p(D)=p,G

1.62a

X348 =
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Focused Field Axial Variation

Axial pressure variation for focused transducer

Gain=4.0

Gain=2.0

z/D.
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Focused Field Axial Variation

Axial pressure variation for focused transducer
25

——@Gain=20.0

20 —Gain =10.0

——@Gain=6.0

L5g

bl /p,
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FPressure amplitude
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Rectangular Transducers
2.0 - 2.0
' (a) - (b)
1.6} 1.6}
1.2: % 1,9.
=Ly
0.8} 2 0.8
0.4 - 0,4:
0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5
Axial range Axlal range

Axial variation of normalised acoustic pressure amplitude
(p/p,) for: (a) a square transducer; (b) a rectangular

transducer with 1:2 aspect ratio.



The Far Field Pressure Distribution

Medium Frequency

Low Frequency

‘-

High Frequency ki

isvr

27J,(kasin 6’)}
kasin @

p(X) ~ {

First zero occurs when .
ka sinO = 3.83.

isvr



UNIVERSITY OF

Southampton

Institute of Sound and
Vibration Research

Non-linear Propagation
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Non-linear Propagation

 If the acoustic amplitude is sufficiently high then non-linear
effects will become significant.

« A point on the wave with particle velocity u will travel with

velocity
c,+ Pu

where the coefficient of non-linearity g B=1+ B

24

e Values for B/A vary from 5.0 for water to 6.3 for blood, ~ 6 -
7 for liver and ~ 10 for fatty tissue.
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Propagation of Plane Wave

Waveform in space
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Non-linear Plane Wave Propagation
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Non-linear Propagation

Results in:

e Generation of
harmonics

 Generation of
shock fronts

poMFPa

« Enhanced
i attenuation

— Enhanced heating

— Enhanced streaming

@ .1 .2 .3 .4 e Saturation

t-microseconds



Southampton

Institute of Sound and

Vibration Research

The Shock Parameter o
A measure of the extent of non-linear propagation
For a plane wave: O — ,B ek z

g=Ug/C Acoustic Mach number

Ug Peak particle velocity at source

k=2rn/2 Wavenumber

Z Distance travelled

o=1 corresponds to shock front just forming

o=mn/2 corresponds to a full shock
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Shock Distance for a Plane Wave

« The shock parameter o = 1 corresponds to a shock front
just forming.

« At high frequencies the plane wave shock distance can be
small.

« So for example in water:

p=3.5
fo =3.5 MHz
P, = 1 MPa

Shock distance = 43 mm
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Plane Wave: Non-linear Propagation
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Fundamental and second to fifth harmonics for a nonlinear plane wave in
water. (f, = 3.5 MHz, P, = 500 kPa, G = 38).
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Initial and Distorted Pulses

Amplitude / MPa
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Measured Output and Model Prediction
6
——Measured waveform (H 0-100)
S |~ Model waveform (H 0-250)
4 -+ - Model waveform (H 0-100)
& 3 :
AN
\\
£ o
-1 -
N NN
0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8

Time /us

On axis time waveforms at z = 54 mm for a 3.1 MHz array in water. Model with 250 MHz
filter (red squares); model with 100 MHz filter (green triangles) and experiment with 100
MH: filter (blue circles).
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Focused Field (G = 8)
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Axial variation for p, = 72 kPa, f, = 2.25 MHz and G = 8.0.



Beam Profiles for Demonstration
Harmonic Imaging System
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Predicted Non-linear Distortion
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0.3
Time / (us)

Tissue

Predicted waveform at a range of 54 mm
in water and tissue (attenuation 0.3
dB/cm/MHz) produced by an array |5
mm by 10 mm in size, with focal lengths
of 80 mm and 50 mm. The source
pressure amplitude is 0.5 MPa.

Pressure / MPa

0.3

Time / (us)
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Saturation

Fundamental pressure
amplitude (at range r)

A
P(r)

>
Voltage applied to transducer
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Acoustic Saturation at the Focus
g 3.5 Pulse
p 3 Ta & . m K length, ps
§ 2.5 ._rlﬂJ
— & m1.02
S 2 ’ﬁ" A 0.82
S5 15 ;lx 4053
n ¢ ®0.35
s ot
é 0.5 'ol
S 0 . . . . .
< 0 200 400 600 800 1000 1200

Acoustic pressure at source / kPa

Measured fundamental acoustic pressures at focus for 4 pulse lengths;
3.3 MHz, 19 mm circular source with 95 mm focal length.
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Enhanced Attenuation (Water)
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Source Enhanced Attenuation | Enhanced Attenuation | Enhancement
Pressure (Theory) (Experiment) Factor

/ MPa / dB cm-! / dB cm’!

0.35 1.0 .1 = 0.14 |9

0.43 |.34 .25 &= 0.08 24

0.57 |.67 1.3 = 0.1 31

Results for attenuation in focal region for 5 MHz focused source
in water; attenuation calculated by reference to results for a
0.02 MPa source pressure.
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Thank You
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