

Institute of Sound and Vibration Research

Fundamentals of Ultrasonic Wave Propagation

Victor Humphrey Institute of Sound and Vibration Research, University of Southampton, UK.

UIA 24th May 2011

Aim

- To give a general overview of ultrasound propagation covering:
 - Basics
 - Linear propagation
 - Interfaces
 - Diffraction
 - Nonlinear propagation

Basics

Propagation of Acoustic Disturbances

Propagation of Acoustic Disturbances

Basic Physical Characteristics

- In fluids only longitudinal ultrasound waves propagate
- Displacement of media is in direction of propagation
- Soft tissues have very low shear modulus

Basic Parameters

Particle velocity

$$\underline{u} = u_x \hat{x} + u_y \hat{y} + u_z \hat{z}$$

•Total pressure

 P_{T}

Total density

 $\rho_{\scriptscriptstyle T}$

When no sound is present:

$$\underline{u} = 0$$
 $\rho_T = \rho_0$ $P_T = P_0$

With an acoustic wave:

$$\underline{u} \qquad \rho_T = \rho_0 + \rho \qquad P_T = P_0 + p$$

Acoustic component

Basic Equations

The acoustic wave equation is obtained by combining three equations:

- 1. The Continuity Equation (Conservation of Mass);
- 2. The Force Equation (Conservation of Momentum);
- 3. The Equation of State.

$$\frac{\partial \rho_{tot}}{\partial t} + \frac{\partial (\rho_{tot} u)}{\partial x} = 0$$

$$-\frac{\partial p_{tot}}{\partial x} = \left(u\frac{\partial u}{\partial x} + \frac{\partial u}{\partial t}\right) \rho_{tot}$$

$$p_{\text{tot}} = f(\rho_{\text{tot}}) = P_0 + \frac{A}{\rho_0} (\rho_T - \rho_0) + \frac{B}{2\rho_0^2} (\rho_T - \rho_0)^2 + \dots$$

The One Dimensional Wave Equation

Linearize these equations by assuming that $u \ll c_0$ and $\rho \ll \rho_0$. Also use fact that ρ_0 doesn't vary in space or time

Can then derive the Wave Equation in 1-D:

$$\frac{\partial^2 p}{\partial x^2} - \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} = 0$$

For a plane wave:

$$p = \rho_0 c_0 u$$

 \Rightarrow The product of equilibrium density ρ_0 and speed of sound c_0 is known at the characteristic acoustic impedance Z.

Values

- Consider two cases of a single frequency wave:
 - An airborne ultrasonic source producing a signal at 137 dB re 20 μPa ;
 - A 3.5 MHz ultrasonic imaging system producing 5 MPa at focus.

Pressure	Frequency	Medium	Displacement	Velocity	Acceleration
Amplitude	/MHz		Amplitude	Amplitude	Amplitude
/MPa			/ m	/ms ⁻¹	/ms ⁻²
0.0002	0.04	Air	1.9 ×10 ⁻⁶	4.9×10 ⁻¹	1.2×10 ⁺⁵
5	3.5	Water	1.5×10 ⁻⁷	3.3	7.3×10 ⁺⁷

Acoustic Intensity

• The average rate of flow of energy through a unit area normal to direction of propagation.

$$I = \frac{1}{2} \frac{P^2}{\rho_0 c_0}$$

- \rightarrow Strictly for plane waves. P is acoustic pressure amplitude.
- → Differences will occur in fields where the particle velocity and pressure are not in phase, but this is not normally significant.
- ightharpoonup For pulsed waveforms need to allow for the mark-to-space ratio in calculating the time averaged intensity I_{TA}

Interfaces

Interfaces

- At a boundary between two fluid media some of the energy will be transmitted and some reflected
- The extent of transmission depends on
 - Relative characteristic acoustic impedance of media
 - Angle of incidence

 e.g. for normal incidence the Amplitude Transmission and Reflection coefficients are given by

$$T = \frac{2}{(1 + Z_1/Z_2)}$$

$$R = \frac{(Z_2 - Z_1)}{(Z_2 + Z_1)}$$

→ Note that in going from a low impedance material to high impedance the pressure may increase (but the displacement decrease)!

Interfaces

- At a boundary between high and low impedance materials $(Z_1 >> Z_2)$ the reflected pressure wave is inverted.
- For asymmetric waveforms (such as those generated by nonlinearity) this can turn a high amplitude compression in to a high amplitude tension.

Mode Conversion

• At a boundary between a fluid and solid it is possible to excite shear waves and surface waves

Transducer Fields

Near Field and Far Field of a Planar Source

Can consider that the field of a planar ultrasonic source can be divided in to two regions:

2a Near field Far field

Transition can be considered to occur at the Rayleigh Distance R_0 where for a circular source of radius a:

Simplest model: in the near field the propagation is planar (and collimated) while in the far field it is spherically spreading.

$$R_0 = \frac{\pi a^2}{\lambda} = \frac{ka^2}{2}$$

Diffraction

Vibration Research

The Radiated Field: The Rayleigh Integral

- The total complex pressure generated by a vibrating source can be evaluated by integrating over the contributions due to all the surface elements.
- The **RAYLEIGH INTEGRAL**
- which in principle enables the calculation of the sound field produced by any distribution of complex normal velocity U of an otherwise rigid infinite plane boundary.

$$p(\mathbf{x}) = \int_{S} dp(\mathbf{x}) = \int_{S} \frac{j\omega\rho_{0}Ue^{-jkr}}{2\pi r} dS$$

Transducer

Near Field of a Circular Piston Radiator

The minimum beam diameter is only ~1/4 transducer diameter (measured at -3 dB level).

Focusing

In order to produce a narrower beam focus the ultrasound field:

The amplitude gain *G* is given by:

$$G = \frac{R_0}{D} = \frac{\pi a^2}{\lambda D}$$

Focused Circular Piston

• Weak: 0 < G < 2

• Medium: $2 < G < 2\pi$

• Strong: $2\pi < G$

Axial variation:

$$p(z) \cong p_0 G \frac{D}{z} \frac{\sin X}{X}$$

$$X = \frac{G}{2} \left(\frac{D}{z} - 1 \right)$$

- At geometric focus:
- -3 dB beam full width in focal plane:

$$p(D) = p_0 G$$

$$x_{-3dB} = \frac{1.62a}{G}$$

Focused Field Axial Variation

Axial pressure variation for focused transducer

Focused Field Axial Variation

Axial pressure variation for focused transducer

Rectangular Transducers

Axial variation of normalised acoustic pressure amplitude (p/p_0) for: (a) a square transducer; (b) a rectangular transducer with 1:2 aspect ratio.

The Far Field Pressure Distribution

$$p(\mathbf{x}) \sim \left[\frac{2 J_1(ka \sin \theta)}{ka \sin \theta} \right]$$

First zero occurs when $ka \sin\theta = 3.83$.

Non-linear Propagation

Non-linear Propagation

- If the acoustic amplitude is sufficiently high then non-linear effects will become significant.
- A point on the wave with particle velocity u will travel with velocity $c_0 + \beta u$

where the coefficient of non-linearity β :

$$\beta = 1 + \frac{B}{2A}$$

• Values for B/A vary from 5.0 for water to 6.3 for blood, ~ 6 - 7 for liver and ~ 10 for fatty tissue.

Propagation of Plane Wave

Non-linear Plane Wave Propagation

Non-linear Propagation

Results in:

- Generation of harmonics
- Generation of shock fronts
- Enhanced attenuation
 - Enhanced heating
 - Enhanced streaming
- Saturation

The Shock Parameter σ

A measure of the extent of non-linear propagation

For a <u>plane</u> wave:

$$\sigma = \beta \varepsilon k z$$

 $\varepsilon = u_0 / c$

Acoustic Mach number

 u_0

Peak particle velocity at source

 $k = 2 \pi / \lambda$

Wavenumber

7.

Distance travelled

 σ =1

corresponds to shock front just forming

 $\sigma = \pi/2$

corresponds to a full shock

Shock Distance for a Plane Wave

- The shock parameter $\sigma = 1$ corresponds to a shock front just forming.
- At high frequencies the plane wave shock distance can be small.
- So for example in water:

$$\beta = 3.5$$

$$f_0 = 3.5 \text{ MHz}$$

$$p_0 = 1 \text{ MPa}$$

Shock distance = 43 mm

Plane Wave: Non-linear Propagation

Fundamental and second to fifth harmonics for a nonlinear plane wave in water. ($f_0 = 3.5 \text{ MHz}$, $P_0 = 500 \text{ kPa}$, G = 38).

Initial and Distorted Pulses

Southampton

Institute of Sound and Vibration Research

Measured Output and Model Prediction

On axis time waveforms at z = 54 mm for a 3.1 MHz array in water. Model with 250 MHz filter (red squares); model with 100 MHz filter (green triangles) and experiment with 100 MHz filter (blue circles).

Focused Field (G = 8)

Axial variation for p_0 = 72 kPa, f_0 = 2.25 MHz and G = 8.0.

Beam Profiles for Demonstration Harmonic Imaging System

Predicted Non-linear Distortion

Predicted waveform at a range of 54 mm in water and tissue (attenuation 0.3 dB/cm/MHz) produced by an array 15 mm by 10 mm in size, with focal lengths of 80 mm and 50 mm. The source pressure amplitude is 0.5 MPa.

Saturation

Acoustic Saturation at the Focus

Acoustic pressure at source / kPa

Measured fundamental acoustic pressures at focus for 4 pulse lengths; 3.3 MHz, 19 mm circular source with 95 mm focal length.

Enhanced Attenuation (Water)

Source Pressure / MPa	Enhanced Attenuation (Theory) / dB cm ⁻¹	Enhanced Attenuation (Experiment) / dB cm ⁻¹	Enhancement Factor
0.35	1.0	1.1 ± 0.14	19
0.43	1.34	1.25 ± 0.08	24
0.57	1.67	1.3 ± 0.1	31

Results for attenuation in focal region for 5 MHz focused source in water; attenuation calculated by reference to results for a 0.02 MPa source pressure.

Thank You

