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Infrared Thermal Imaging During Ultrasonic Aspiration of Bone

Outline: 
• Background

– Ultrasonic surgical aspiration

• Ultrasonic Horns (Surgical Tips) for Bone Applicati ons

– Approaches to brain tumors and aneurisms

– Protruded surgical bone tips of improved geometry, visibility, and efficacy

• Ultrasonic Horn Development

– Modified Kleesattel Gaussian (Ampulla) horn basis and references– Modified Kleesattel Gaussian (Ampulla) horn basis and references

– 1-D physical mathematical models  

– Finite Element Method Mechanica analysis and simulation

– Essential to modeling and simulation of complex contours and geometries

– Stroke typically predicted with 2 % to 7 % error depending on horn complexity

– Maintenance of allowed stress to about 1/3 of material yield strength 

• Infrared Thermal Imaging During Ultrasonic Aspirati on

– Basis studies with developmental surgical tips

– Cadaveric section studies and statistical analysis in representative cranium tissue

• Summary and Conclusions



Background on Ultrasonic Surgical Aspirators

• Removal of tumors and diseased tissue in Neurosurgery and in Liver, Orthopedic, 
Gynecological, and General surgery

• Employing transducers of 23 kHz to 36 kHz and horn designs more than 30 years

• Polymer irrigation flue surrounding the horn
• Continuous circuit of cooling irrigation liquid 

Handpieces (Transducers) and Surgical Tips (Horns)

Aspirating 

Tumor

• Continuous circuit of cooling irrigation liquid 
• Dilute blood and further wet aspirated tissue
• Prevent coagulation and occlusion of central aspirating channel



Mechanica Finite Element Analysis Simulation

Developmental Surgical Tips

Click to Activate 
Simulation

254 µm 
0.010 in



Background on Ultrasonic Surgical Aspirators

• Creating a cavity to aid in reduction of cranial pressure

• Removal of bone on dura

• Viewed with endoscope via second nostril

Endoscopic-Nasal Surgery in Sphenoid Sinus Region u sing a Bone Tip

Click to Activate Click to Activate 



In-Progress Understanding of Ultrasound Tissue Frag mentation Mechanisms

• Momentum in mechanical impact

• Particle displacement and induced stress field
• Cavitation assisted fragmentation and emulsification

Ultrasound Tissue Interactions Commonly Described

Momentum, P=mv, product of mass and velocity

“jackhammer effect”

CUSA Tip

CompressionRarefaction

Cavitation

Stress Field

CUSA Tip
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36 kHz S urg ic al T ip with 1 MHz P anametric  T rans duc er
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36 kHz  S urg ic al T ip with 0.5 MHz  P anametric  T rans duc er
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Below AboveAbove

Ultrasonic Aspirator 
Surgical Tip in 

Broadband noise response at cavitation threshold
• 36 kHz resonant drive signal apparent as spikes, al lowed frequencies of transducer-

tip geometry and harmonics are sometimes apparent

• 300 kHz (-6 dB) high-pass filter with spectrum magn itude averaged 100 waveforms

• Panametrics transducers: V301 0.5MHz/1.0 inch flat and V303 1.0MHz/0.5 inch flat

• Flat transducer selected for later use with tissue 

• Broadband noise spectrum increases markedly at cavi tation threshold transition

• Cavitation threshold is monitored with increasing s urgical tip stroke peak-peak

Below Above

Surgical Tip in 
Distilled Water



Instrumentation

Cavitation 

detection in tissue

Cavitation 
detection in liquid



Cavitation in Tissue
• Exhibited similar “signature” to liquid
• Observed in two tissue types
• Intermittent and dynamic in tissue

23 kHz  Handpiece 

500 kHz transducer in liver
23kHz Handpiece 

500kHz transducer in beef



Background on Ultrasonic Surgical Aspirators

• Bone Tip aspirating hard skull

• Thermal management of bone removal

• Neurosurgeon develops “feel” for system

Cadaveric Section Study using a Development Bone Ti p

Click to Activate



Developmental Ultrasonic Bone Tips

Protruded Bone Tip

• Protruded working surface for improved visibility in microscopy and endoscopy
• Relief angles to avoid any resistance to plunge cutting
• A 45° helical lay of pyramids

• Surgical tip vibrational stroke exceeding known cavitation threshold for 24 kHz 
ultrasound and saline irrigation liquidultrasound and saline irrigation liquid

• Pyramidal structure to enable interfaces with varying angled refracted longitudinal 
waves and stress concentration

• Reduced frictional heating
• Improved efficacy, visibility, and geometry



Wave Mechanics and Finite Element Method, Mechanica  Simulation

Ripple, transverse motion, due to protrusion of wor king surface, greatly magnified

Developmental Surgical Tips

Click to Activate



Ripple Antinodes

Ripple Nodes

• Horn vibrates longitudinally at 
resonance

• Ripple, transverse motion, due to 
asymmetric protrusions

• Audible squealing loss of damping and 
cooling due to errant cavitation

Ripple, transverse motion, greatly magnified in dis play

Finite Element Analysis 
Developmental Surgical Tips

• Cavitation along horn caused erosion

• Stress due to ripple and vibrational 
stress exceeding 345 MPa (50,000 psi)

• Premature failure of surgical tips

• Novel distal end geometry and 
proprietary approaches to wave 
mechanics managed ripple



Bone Fragmentation Surface Top Dead Center

Developmental Ultrasonic Bone Tips

Handpiece
20° Bend 

Relief exists, such that there is less resistance to cutting or cause of frictional drag and induced heating 



Bone Fragmentation Surface Up-Angled Top Dead Cente r

Developmental Ultrasonic Bone Tips

Relief exists, such that there is less resistance to cutting or cause of frictional drag and induced heating 



Piezoelectric Transducer

Forcing Function

Stepped Horn

Solid Model used for Mechanica Finite Element Analy sis

Developmental Ultrasonic Bone Tips

Stepped Horn

Measures

Stepped Horn

Gaussian Horn

Straight Section
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Gaussian Horn Profile
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Global Approach to Mechanica Analysis

Half Model Surface Constraints 

• Broadband Modal Analysis
– Yields dominant modes

• Design Frequency Analysis
– Forcing function (halve force)

– Yields peak displacements, 
stresses, strains, etc

Full Model – Forcing Function 

• Narrow Band Modal Analysis
– Yields many modes for review

• Design Frequency Analysis
– Forcing function with damping

– Assurance of resonant peak 
displacement and stress data

– At frequency steps and over analysis– At frequency steps and over analysis

– By component and selected geometry

• Master Interval Analysis
– About resonance

– Simulation of motion, without artificial 
constraints

– Stress and strain distribution, and 
data query

– Mechanical gain, node and anti-node 
locations, and confirmation of nodal 
forces 

Pro/Mechanica is a product of Parametric 
Technology Corporation, Needham MA

Half Model – Symmetry Constraints 

• Narrow Band Modal Analysis

• Design Frequency and Master 
Interval Analysis

– Forcing function with damping

– Excellent for iterative design

– Simulation of motion, stress and 
strain distribution

– Mechanical gain, node and anti-node 
locations, and nodal forces 



Summary of Finite Element Analysis 
Developmental Surgical Tips

Normalized

Simulated

Inverse Conical
Bone Tip 

Up-Angle
Bone Tip

Basis
BoneTip

Input Damping (%) 0.0208 0.0163 0.0142

Stack Displacement (µm) 3.27 3.27 3.27

Horn Stroke (µm) 254 268 251

Horn Stress Maximum (MPa) 276 284 266

Horn Stress Maximum (psi) 38,680 41,280 38,550

Resonant Frequency (Hz) 24,800 24,770 24,740

Electromechanical Data on Fabricated Surgical Tips

Actual

Actual

Input Forcing Function (N) 2,380 2,380 2,380

Bone Tip Voltage Current Power
Power 
Factor Frequency Stroke Stroke

(VRMS) (ARMS) (Watts) (PF) (kHz) (in) (µm)
Developmental 
24 kHz  Inverse 

Conical Bone Tip

Average 70 0.251 17 0.975 24.039 0.0093 236

StdDev 8 0.006 1.98 0.016 0.046 0.0002 4

Developmental 
24 kHz Up-Angle 

Bone Tip

Average 71 0.250 17 0.970 23.975 0.0105 266

StdDev 2 0.002 0.46 0.02 0.037 0.0002 4

Baseline
24 kHz Bone Tip Baseline 55 0.256 15 0.964 24.000 0.0101 256 Actual



Management of Errant Ripple, Transverse Motion, and  Vibrational Stress

Exaggerated display of combined motion

Finite Element Analysis 
Developmental Surgical Tips

Maximum stress 268 MPa (38,700 Psi) due to longitud inal vibration and transverse ripple

Surgical tip stroke 254 µm p-p (0.010 in p-p) 

Transverse stress modulates longitudinal vibrationa l stress 



Developmental Bone Tip 

• Eliminated objectionable audible squealing due to errant cavitation 
• Minimized pitting or erosion in the metallic horn due to cavitation at ripple maxima
• Overcame loss of stability in the ultrasonic controller due to impedance change
• Eliminated loss of stroke in the surgical tip attributed to powering ripple 
• Mitigated excess von Mises stresses that were concentrated at the ripple maxima
• Overcame infantile failure of horns in life-testing• Overcame infantile failure of horns in life-testing



Fragmentation and Abrasion

Stroke Exceeds Cavitation Threshold of Saline, as l ow as 208 µm 

Developmental Surgical Tips

Click to View

Pocine Cranium at Ultrasonics R&D Laboratory
Dr. Arle, Lahey Clinic, Burlington, MA



Clinical Studies and References Related to Potentia l Hazards

Clinical Studies
• K. Kim, T. Isu, R. Masumoto, M. Isobe, K. Kogure , Surgical pitfalls of an ultrasonics bone 

curette (Sonopet) in spinal surgery. Neurosurgery, 2006 Oct; 59(4Suppl 2).

• F. Suetsuna , S. Harata , N. Yoshimura :Influence of the ultrasonic surgical aspirator on the 
dura and spinal cord. An electrohistologic study. Spine 16:503-509,1991.

• W. Young, A. R. Cohen, C. D. Hunt, J. Ransohoff, Acute Physiological Effects of Ultrasonic 
Vibrations on Nervous Tissue, Neurosurgery, Vol. 8. No. 6, 1981.Vibrations on Nervous Tissue, Neurosurgery, Vol. 8. No. 6, 1981.

• E. S. Flamm, J. Ransohoff, D. Wuchinich, and  A. Broadwin, "A Preliminary Experience with 
Ultrasonic Aspiration in Neurosurgery”, Neurosurgery. 2:240-245;1978.

Additional References
• International Standard, IEC 61847, Ultrasonics-Surgical Systems-Measurement and 

declaration of the basic output characteristics, 1998-01.
• NCRP Report No. 74, Biological Effects of Ultrasound: Mechanisms and Clinical 

Implications, Dec. 30, 1983.
• P. A. Ridderheim, C. von Essen C, and B. Zetterlund: Indirect injury to cranial nerves after 

surgery with Cavitron ultrasonic surgical aspirator (CUSA): Case report. Acta Neurochir 
(Wien) 89:84–86, 1987 



Investigation of Potential Hazards

Considerations for Discussion
• Ultrasound is mechanical in nature and its biological effects are described in the literature 

based on mechanical stresses, thermal mechanisms, and cavitation 

• There are at least two concerns regarding potential hazards to adjacent critical anatomy in 
ultrasonic aspiration: heating and propagation of ultrasound are of concern

• It is clear that excess acoustic power, such as in highly loading a surgical tip to tissue, can 
cause localized heatingcause localized heating

• Less is known about the propagation of ultrasound from the surgical tip in biologic tissue 
and across boundaries or membranes, and its influence on specific critical anatomy

Recent Studies
• Infrared thermal imaging during ultrasonic aspiration
• Vibrating ultrasonic surgical tip temperature measurement
• Neural monitoring during ultrasonic aspiration
• Complementing ultrasound output characterization, such as pressure and intensity, and 

calorimetry



Technical Interaction on CUSA

Dr. Theodore H. Schwartz of Weill Cornell Medical C ollege and New York-Presbyterian Hospital
His Fellow Dr. Graeme Woodworth of John Hopkins, Ba ltimore, Maryland

• Comparison of ultrasonic bone removal and mechanical fluted and diamond drills
• Region of lesser sphenoid wing of cadaveric section
• Initial measurements conducted with infrared thermal microscopy 
• An initial setup trial and 3 repeated trials of each instrument removing bone for • An initial setup trial and 3 repeated trials of each instrument removing bone for 

less than 2 minutes
• Power data acquired continuously under Labview control via Yokogowa 

WT- 210 Digital Integrating Power Meter
• Maximum absolute temperature reading taken manually during bone removal in 

field of view with FLIR Infrared Camera, ThermaCAM P45HSV
• Infrared emissivity and temperature measurement validation conducted in 

advance for bone over range of interest



Non-contact Infrared Thermal Imaging

• Infrared thermal imaging was validated for tissue, specifically for bovine muscle, liver, and bone
• ThermaCAM P45HSV Infrared Camera from FLIR Systems Inc.
• Validation included comparing infrared measurements to surface placed and embedded miniature 

thermocouple measurements
• Emissivity was characterized as materials were removed from a thermal bath and cooled, such that 

data were obtained over the range of temperature of interest
• ASTM Standard (E1933-99a) for IR emissivity compensation uses single point contact temperature 

measurement and single IR temperature of dry samples at stable temperatures, as simplification
• Reference, “Bone Emissivity,” by L. D. Stumme et al, within temperature range of 37°C-60°C • Reference, “Bone Emissivity,” by L. D. Stumme et al, within temperature range of 37°C-60°C 

average emissivity was 1.01 +/- 0.034  over range of 0.94 to 1.06 for samples of human bone
• Every 0.01 the emissivity varied from true value an error of 0.1°C resulted, and this produced an 

error of 1.2 ° C over the range measured

• Our data for dry bone and bone wetted yielded emissivity about 1.0, with error of IR and miniature 
thermocouple maximum of 2.5 °C from 36°C to 60°C

• Dynamic system with bone drying over measurement and thermocouple experiencing different 
thermodynamics

• We plan additional work with isothermal bath and circulated saline liquid on bone to support future 
clinical efforts



Ultrasonic                              
Bone Tip

Efficacy in Ultrasonic Bone Aspiration Enables Ther mal Management

Mechanical                  
Diamond Drill

Application  of Development Bone Tip in Sphenoid Wi ng                               

Principal concern with drill was high speed rotary cutting 
near critical anatomy and wind-up of tissue

Thermal issues with mechanical drills were not expe cted



Ultrasonic   
Bone Tip

Fluted Drill Diamond Drill

Development Bone Tip and Mechanical Drills



Tabulated Thermal Data

Maximum Absolute Temperature during Bone Removal

Trial A Trial B Trial C

(°C) (°C) (°C)

Ultrasonic Bone Tip

24.6 24.8 24.2

25.6 27.0 31.1

24.0 27.2 26.5

Fluted Drill

45.0 29.9 39.4

45.9 33.2 28.1

69.4 33.2 55.0

44.2 50.7

35.7

• Maximum absolute temperature data recorded in field of bone removal for 3 
trials in lesser sphenoid wing of cadaver section

• Data are extracted from manually recorded images
• A  criteria discussed in bone necrosis in drilling is temperature exceeding 

56°C for 10 seconds, reference, Pearce et al. Basis study is believed to be 
Moritz et al, showing irreversible damage at 56°C for 10 seconds and 
necrosis at same temperature at about 20 seconds.

• In some applications of removing bone, necrosis is of less concern

35.7

Diamond Drill

37.4 49.0 26.4

40.3 22.8 59.3

45.0 57.1 45.5

45.0 46.0 78.5

47.8



Technical Discussion on Cadaveric Section Study

• Ultrasonic bone tip had lower temperature than mechanical fluted and diamond 
drills in precision bone removal studied

• Surface thermal spread will continue to be monitored, but extent of thermal rise is 
associated with heated irrigation liquid, and is below normal body temperature

• It should be noted, precision removal, where trained surgeon limits loading and 
thermal hazard was monitored, and this is consistent with instructions for use

• Maximum fragmentation power measured in precision ultrasonic bone removal in • Maximum fragmentation power measured in precision ultrasonic bone removal in 
cadaveric section was less than 6 Watts

• Results indicate a safe practice could be developed in the present application
• Of course, each application and proximity to sensitive critical anatomy would have 

to be considered and further developed by the surgeon
• A more statistical approach needed given sparse bone tissue in sphenoid wing 

and investigation of thermal rise contribution to body temperature is of interest



Data from Testing in Integra Neurosurgery Ultrasoni cs Lab
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24 kHz Developmental Bone Tip Fragmentation Power in Porcine Cranium

95% Confidence Interval Box Plots

• Power measured for 10 developmental 24 kHz Bone Tips fragmenting porcine cranium
• Data points within the box represent 95% confidence interval 
• Two minutes of bone aspiration per sample, with 1 measurement per second 
• Mean power measured less than 4 Watts 
• Elevated power measurements, shown as outliers with an asterisk, are of 1  

second duration, and  correspond to excess loading
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Data from Testing in Integra Neurosurgery Ultrasoni cs Lab
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24 kHz Developmental Bone Tip: Thermal Monitoring in Ultrasonic Aspiration of Porcine Cranium

95% Confidence Interval Box Plots

• Absolute temperature measurement based on non-contact infrared thermal monitoring
• Mean temperature at surgical site less than 41.1°C for developmental 24 kHz Bone Tips
• Two occurrences above 55°C, believed to correspond to excessive loading
• Box represents 95% confidence interval and those indicated with asterisk are outliers
• One thermal image every 6 seconds, or 20 measurements per 2 minutes of bone aspiration
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• Thermal rise and power monitored in repeated trials using the 24 kHz Development Bone 
Tip with porcine cranium starting at low temperature and body temperature

• Similar ultrasonic power observed in fragmentation for two thermal starting conditions
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• Thermal rise monitored in repeated trials using the 24 kHz Development Bone Tip with 
porcine cranium starting at low temperature and body temperature

• Thermal rise with similar ultrasonic power is less significant at body temperature than 
when starting at lower temperatures

• Thermal rise quantified is not strictly additive to body temperature: an important result in 
support of future testing and reporting



Click to View All Video

Click to View

Click to View

Click to View All Video

Anterior Clinoid 
Process Bone

Removal

Bone Ridges and Opening in Periorbital Bone
Dr. Padalino, SUNY Upstate Medical University

Reference, Wikipedia and they reference Gray’s Anat omy

Dr. Deshaies, 
SUNY Upstate 

Medical University



Infrared Thermal Imaging During Ultrasonic Aspiration of Bone

Summary: 
• Background

• Ultrasonic Horns (Surgical Tips) for Bone Applications

– Improved geometry, visibility, and efficacy

• Ultrasonic Horn Development

– Stroke typically predicted with 2 % to 7 % error depending on horn complexity

– Maintenance of allowed stress to about 1/3 of material yield strength 

• Infrared Thermal Imaging During Ultrasonic Aspiration• Infrared Thermal Imaging During Ultrasonic Aspiration

– Ultrasonic bone tip had lower temperature than mechanical fluted and diamond 
drills in precision bone removal studied

– It should be noted, precision removal, where trained surgeon limits loading and 
thermal hazard was monitored, and this is consistent with instructions for use

• Coupled with statistical treatment of data in further testing, results indicated a safe 
practice could be developed

• Of course, each application and proximity to sensitive critical anatomy would have to 
be considered and further developed by the surgeon
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