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My Current Research Interests

® Functional Nanomaterials

®* Micromachined Sensors and Actuators

®* RF/Microwave/Bio MEMS/Electronic Devices

Wireless
Interface

Today’s Topic:
Piezoelectrically-Transduced
High-Q On-Chip umechanical
Resonators & Filters (100um)




Research: High-Q RF MEMS Resonators and Filters
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Recent advent of RF MEMS filters
developed at USF that can directly
replace its counterparts in today’s
cell phones to extend battery life.

ALD nano-scale
solid gap interconnect

(a) Capacitively-transduced and mechanically-coupled micromechanical resonator development
— Equivalent Circuit Extraction

(b) Piezoelectrically-actuated resonator array and filter — RF Characterization

(c) More complex micromechanical signal processor such as mechanically-coupled/electrically-
coupled resonator filters can be developed by using high-Q resonators as building blocks.
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Fundamentals and Concepts of
Micromechanical Resonant Sensors
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From Macro to Micromechanical Transducers

® Can a diving board be a functional sensor?

]
J
|
Size Reduction by N
~10,000X or more |

I

a Deflection mode

b Resonance mode
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T modes of cantilever-based biomolecule detection: (#) deflection mode and (#) resonance mode.

As Moore’s law In transistors, we are
approaching the ultimate scaling limit!

Static Mode vs. Resonant Mode Operations
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http://www.youtube.com/watch?v=N3zA1bYqe3M

Frequency Shift Induced by Mass Loading Effect

Unloaded Resonator Resonator with Absorbed Analyte
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From a Diving Board to MICI‘O/ Nano Cantllevers

Bottom-up
nanofabrication

Top-down
nanofabrication
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oy On-chip high-Q
micromechanical
: resonator (USF)
2004 2007 2010 2013

Year

®* Nano-cantilever reached zepto-gram (10-21g) detection limit
® However, we are approaching the ultimate scaling limit.
® Solution: replacing flexural mode by stiffer extensional mode.
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Piezoelectrically-Transduced
Micromechanical On-Chip
High-Q Resonators and Filters
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Design and Fabrication of InP DHBT MMIC's
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InP/GaAsSb/InP
DHBT+Stripline

Ka-band oscillator

- Collector
= Active device size: 2x10um? R iy, . '(JAlrbrldge

= Oscillation frequency: 34.9GHz
* Phase noise: -92dBc/Hz @ 1MHz offset
» Need for high-Q on-chip resonator!

1.J. Wang et. al., “Low power InP/GaAsSb/InP DHBT cascode amplifier with GBP/Pdc
of 7.2GHz/mW,” IEE Electronics Letters, Vol. 42 , No.1, January, 2006.

2.J. Wang et. al., “InP/GaAsSb/InP DHBT monolithic transimpedance amplifier with
large dynamic range,” Proc. 2005 European Microwave Conf., Paris, France, pp.
141-144, Oct. 3-7, 2005

3.J. Wang et. al., “First demonstration of low-power monolithic transimpedance
amplifier using InP/GaAsSb/InP DHBTSs,” Technical Digest IEEE MTT-S 2005 Int. .
Microwave Symposium, Long Beach, CA, pp.101-104, June 12-17, 2005. 2 ] 380 10"! “025

4.J. Wang et. al., “Monolithic transimpedance amplifiers for low-power/low noise and
maximum bandwidth using InP/GaAsSb/InP DHBTs,” Proceedings of Workshop on R
Compound Semiconductor Devices & Integrated Circuits, Cardiff, UK, May 2005. H{‘{‘r\rgl{ﬁgglg{
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Challenge: Lack of High-Q On-Chip Components!

Inductor equivalent circuit

Planar Inductor

R
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968100 28KY %228 136um | 968108 20KV X179 :
» To improve Q of on-chip inductor - need to minimize parasitics
» Suspended airbridge inductor = reduced substrate loss > 2X increase in Q
= \With more advanced MEMS technology - inductor with Q of 100 is possible
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Motivation: Miniaturization of Transceivers

:g :w)er :;:tgtlt)er :l;;w)er 1.9 GHz & Q=10,600

RF Filter
(ceramic)

Transistor
Electronics

Problem hlgh Q passwes (such as

mechanical resonators) posed a
bottleneck against miniaturization

® Transistors or on-chip inductor = Q < 100

® High-Q frequency selective components (Q > 1000) required for
frequency generation and filtering in wireless communications

® Replace off-chip high-Q components with on-chip high-Q pmechanical
versions to enable miniaturization o



Multi-Band and Multi-Mode Wireless Handsets
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Next Generation Wireless Communicators

Wrist watch Wireless energy
4 phone and GPS scavenging
sensor networ

\Single Chip

Transceivers

Biomedical Implants
and Neural Prostheses

® Requirements: ultra-low power, tiny size, high performance

® Needs: system-on-a-chip able to communicate wirelessly _




Thin-Film Bulk Acoustic Wave (BAW) Resonator

® Piezoelectric membrane sandwiched by metal electrodes
% extensional mode vibration: 1.6 to 7GHz, Q ~500-1,500
% dimensions on the order of 200um for 1.6GHz
% link individual FBAR’s together in ladders to make filters

Top _ |
Electrode Piezoelectric

Fil

p+ Layer

Etched Via Interfac

Bottom-Side
Electrode

Substrate

| freq oc thickness (h) |

® Limitations: ’
% Q ~500-1,500, TC; ~ 25-35 ppm/°C
Y difficult to achieve several different frequencies on a sinile-chip

UNIVERSITY OF
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Current State of the Art Resonator Technology
-

1. Thin Film Bulk Acoustic Resonators (FBAR)

Piezoelectric membrane embedded b/w 2 metal electrodes

Operational frequencies (thickness mode): 800 MHz to 20 GHz
Commercially available s Gl
Q _ 500_1,500 Bottom elect_(?dg/ A
One frequency per batch process f(’

/Top electrode

\/ ,:‘:_:7:“5. \\ )
= e B\ Standing wave
f : . — . of BAW
%
Si /’ Cavity \_ Si

Piezoelectric thin film resonator

2. Surface Acoustic Wave Resonators (SAW)

Surface acoustic wave propagating across Reflectors of metal strip
a piezoelectric substrate material , | Combelsctiades |
Standing wave | \ A
of SAW g

Operational frequencies: 10 MHz to 5 GHz

Commercially available L7 S
Piezoelectric single crystal

Moderate performance (Q’s, etc.)

o _ ] SAW resonator
Not monolithically integrated with IC’s.

UNIVERSITY OF
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Basic Concept: Scaling of Guitar Strings

Guitar String

>

Vib. Amplitude

>
110 Hz Freq.

Vibrating “A”
String (110Hz)

Stiffness

Transmission [dB]

Anchor

[Bannon 1996]
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f,=8.5MHz
Q,.. =8,000

Qair ~50

uMechanical Resonator

Performance:

L,=40.8um

m,~ 10" kg
W.=8um, h=2pm
d=1000A, V,=5V
Press.=70mTorr

8.48

R49 R KN R K1

Frequency [MHz]

8.52

8.53
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Lumped Element Model for a Mechanical Resonator

* Forced harmonic vibration of a mechanical resonator can be
modeled by a simple spring-mass-damper system.

= [n-plane extensional modes offer higher stiffness than that of
flexural mode, thus are more amenable for high frequencies.

F(w) = Fsin(@t)  Meq : Equivalent Mass keq
eq - EQuivalent Stiffness ), =
Coq - Damping Coefficient meq

)

Min: 4.766e-12
UNIVERSITY OF
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Mechanical Design and Layout of pResonator

Radial Contour Mode Disk
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Sometimes Asymmetric Mode Shape is Preferred.

COVENTOR ' £4008 1 COVENTOR

® So-called wine-glass mode (ecliptic mode).

G It has four nodal locations that are ideal for anchor attachment.

S It is capable of generating outputs with 180° phase offset.
@ One can take a single-end input and convert it to differential outputs.

IHIl«



Design based on the Equivalent Circuit Model

= The electrical behavior of the pmechanical resonator
can be described by an equivalent LCR circuit

Mechanical Domain <> Electrical analog

= *+0

o1

—Co

Force F > Voltage V

Velocity Y > Current I

Mass m,, <> Inductance L,

Compliance 1/k,q <> Capacitance C

Damping b, <> Resistance R

C R
Tl‘l' 1 Lm " ” 1 :le l=’?=="
i YAVAVam 2

Co ——
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Design based on the Equivalent Circuit Model
N,

A H(o) = XIF

>
@ freq.
Mechanical Domain - EleCtriCiDomain
IL ~ 20l0g, | —2 O o @
2R +R; BW_ 355 27-BW 545
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Basics of Piezoelectrically-Transduced Resonators

» A piezoelectrically-transduced contour-mode resonator consists of
a piezoelectric transducer layer sandwiched b/w 2 metal contacts.
« The e-field is applied vertically, d;;, induce in-plane lateral move.

Top Electrode I

Piezo Film

Thin-Film Piezoelectric Piezo-on-Silicon
Resonator Resonator

N ¥ l\.!Nl\-'ERS[_TY OF
USF Bl



Design of Electrodes to Pick Up the Target Mode
..

= Design of top electrodes must
match the strain field at the
! target resonance mode

= Resonance frequency is set by
the length of the structure

'"“i‘f::-\:; I = A basic building block for filter

n |E
° 2L\ p

E = Young’s Modulus
p = Density
L= length

N ¥ l\.!Nl\-'ERS[_TY OF
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Benefits from Array/Circuit Design Concept?

COVENTOR ' £4008 1 COVENTOR

® Micro-Electro-Mechanical-Systems (MEMS) Technology
& Enables miniaturization of micromachined transducer devices.

¢ Like transistors in IC’s, those miniaturized MEMS transducers now
act as the building blocks for more complicated circuits/networks.
o Example 1. cascade MEMS resonators in series - MEMS filter.

o Example 2: parallel combination (Array) - A composite resonator.
*- Example 3: integration with IC’s — precise timing & frequency control.

IHII]}E‘r



Selection of Piezoelectric Thin Film Transducers

" Among three leading thin-film depositable candidates,
sputtered ZnO was chosen for this work due to tradeoff.

®Desirable properties of piezoelectric film transducers

& Low permittivity

& High resistivity

& Dielectric strength

& High piezo-coefficient

& High acoustic velocity

| Material | AIN | ZnO | PZT |
Dielectric Constant 9 10 1000
Acoustic Velocity (Km/s) 10.4 6.3 2.5
Piezocoeff. (d;;) [pC/N] 3.4~5 7.5~12 90~220
Piezocoeff. (d,) [PC/IN] -2 -2.3~-5 '43(’)“ )
Dielectric Strength

(kV/mm) 20 10 100
Resistivity (Q.cm) 1013 107 10°

UNIVERSITY OF
USF Bt
COLLEGE OF INGINIERIN



Microfabrication Process

Piezo-on-Silicon
Resonators Process Flow

Pre-release followed by bottom
electrode patterning by lift-off

ZnO Sputtering deposition and open
via access to bottom electrode

through ZnO

Top electrode patterning by lift-off

ZnO anisotropic dry etching in CH,-Ar
followed by anisotropic silicon etch of
the device layer

UNIVERSITY OF
U SF SOUTH FLORIDA
COLLIGE OF INGINIERING



Microfabricated Piezo-on-Silicon Resonators

Piezo-on-Silicon
Resonators

®"No stiction problems

®" Mechanically-coupled array
of resonators has been
successfully fabricated

®"The inclusion of silicon
raise the Q’s of the devices

EeJ UNIVERSITY OF
[ &l soUTH FLORIDA
COLLEGE OF INGINIERING



On-Wafer Probing RF Measurement Setup

Vector Network Analyzer
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Transmission (dB)

Piezo-On-Silicon SOI pmechanical Resonators

n
o
1
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o

rectangular plate resonator

oth order ZnO-on-SOl

40 ¢

| f, = 440.525 MHz

1 Q,=2813 (R,=500Q)
| Q,=5335

IR, =141 Q

430

435 440 445
Frequency (MHz)

450

Low motional resistance

CAD-definable frequency
High Q (>5,000 unloaded)
Tiny size (~100 pm)

|C Monolithic integration
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Transmission (dB)

Piezo-On-Silicon SOI umechanical Resonators
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-80

13t order ZnO-on-Silicon
rectangular plate resonator

f, = 868.43 MHz
ﬂ Q,=2000 (R;=502) f§
Q,= 2130 .60 um
R,,= 1.450 kQ
’\ij | Electrode pitch size |

850 855 860 865 870 875 880 885 890 N
Frequency (MHz)
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Design of Mechanically-Coupled Resonator Filters
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= Spring-coupled disk resonator filter can provide real
filter characteristics

-
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Design of Mechanically-Coupled Resonator Filters
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| l F SOUTH FLORIDA
COLLEGE OF IN ERIN



Mechanically-Coupled Filters

‘ Array of 2 x 2 mechanically

coupled resonator

f,=49.10 MHz

BW=16%

IL=26dB

/ 52: '« Rippple=0.5dB
o 5 S

-
-
v - . “
.. ..

« ««50 Q Termination

- »2 kQ Termination

46

48

50
Frequency (MHz)

52 54

Array of 4 X 2 mechanically
coupled resonator

f, = 49.64 MHz
BW=16%

IL =3.3dB
Ry=1kQ
BPrpme = 0.5 dB

AAAAAAAAAAAAAAAAAAA
L L T

45 46 47 48 49 50 51
Frequency (MHz)

52 53 54 &5
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Transmission (dB)

Mechanically-Coupled Filters

Array of 10 X 2 mechanically
coupled resonator
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f,=73.185 MHz == 300 Q Termination
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Transmission (dB)

Mechanically-Coupled Filters

Array of 3 X 2 mechanically

coupled resonator

f,= 186.54 MHz P
1 BW=2% N \
IL= 4 dB / \
1 BPpe =10B / \
LC Terminated \
- “
W
7 ,_.I", P
"~ \/
O- .
[ H Array scheme — a zero in
J " the transfer function, thus a
notch in the freq. spectrum.
1770 175 180 185 190 195 200
Frequency (MHz)
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Mechanically-Coupled Filters

Array of 3 X 3 mechanically
coupled resonator

0
f=112.70 MHz =1 kQ Termination
101 Bw=16% =50 Q Termination
IL=5dB

BPgppe = 0.6 dB

Transmission (dB)
d & A » N
o o o o o

|20 dB Shape factor : 1.7 |

-70
-80 +r—W— ——"——t——t—————qf
90 95 100 105 110 115 120 125 130
Frequency (MHz)
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Capacitively-Coupled Filters

Coupling
-~ A i
Input //R \ Capacitor 4~ N output
Matching, "in === - ; [~ - L R Y Matching
I | R L i | R L il COU 1
VG, Lh R Xi L7 s R,
| I = T SIS e I SR | ¥ S
\ Impedance
Coupling 4 - = Matched Filter
Capacitor /:?‘:
Standalone -
Resonator '

_

f, Freq

= Capacitively- or electrically-coupled umechanical resonator
filter can provide real filter characteristics
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Transmission (dB)

Capacitively-Coupled Filters

Input :
Matching Coupling M(;?;E:Jnt
LA Capacitor uching

2-pole capacitively / Rin
coupled filter

\
\ 4
. Rr=750Q
—Simulated BW=2%
. == Measured IL=2 dB

SFpas =25

140 150 160 170 180 190 200 210

Frequency (MHz)
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Transmission (dB)
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-60

Capacitively-Coupled Filters

3-pole capacitively
coupled filter

[T

-=Simulated
-—=N\easured

Rr=1kQ
BW=15%
IL=3dB
SFopup= 2.2

# Resonators in array

i
!

Better shape factor
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Acoustically-Coupled Filters

Coupling
-~. A Inductor
Mlnp#.t IR +~ "~ Output
MEWTe _ih ‘ N 2/ Matching
! I I i C |
LR T R R TR,
- FRESTT R L X /
N/ \\ /7 = T =
Q.-"“\\‘\~\\\\~ _ 7
. Impedance

Coupling

< Matched Filter

Inductor /:
Standalone -
Resonator j ‘

f

o

_

Freq

= Acoustically-coupled umechanical resonator (a single device
In two modes) r can provide real filter characteristics
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Acoustically-Coupled Filters

f,= 69.86 MHzZ f,= 72.96 MHz
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g~ VI l) Acoustically-Coupled Filters

Thin-film piezoelectric
monolithic filter

Transmission(dB)

0
L-Network Matched
. ==|_-Network Matched f.= 481.56 MHz
10 4 BW=0.76 %
i IL=7dB
s SF(20dB) =252
-60 T+
70 - ' ' :
430 450 470 490 510 530
Frequency (MHz) LT
FILTER
@ 27 nH 48‘:1.-2 MHz 27 nH %
BW=3.887 MHz
L =
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Acoustically-Coupled Filters

Thin-film piezoelectric

monolithic filter

L-Network Matched

0
—L-Network Matched = .= 536.85 MHz
[l Bw=08%
_ -10 + 'I:II I'l. IL=6dB
% |':" 'u:ul SF 20dB = 28
S— H 'l:ln
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Acoustically-Coupled Filters

Transmission (dB)
W
o

-60

R;= 3770

Frequency (MHz)
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Conclusions

Successful implementation of bandpass MEMS filters operating in
the VHF/UHF bands with performance better than SAW devices by
using piezoelectrically-transduced contour-mode resonators.

Three viable filter design/synthesis strategies were systematically
explored (e.g., mechanically, electrically and acoustically coupled
filters, etc.).

Two-pole filters with a bandwidth as narrow as 200 kHz and an
insertion loss as low as <2dB have been demonstrated that fulfill
the requirements for a variety of wireless applications.

A robust and high-yield mass-production amenable process for
thin-film ZnO-on-SOI resonators and filters have been developed.

The microfabricated MEMS filters have greatly reduced sizes up to
10-100 times smaller than the commercial devices implemented
with SAW resonators operating at the same frequency range.
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= ECCS (2), CMMI (1), CHE (1), CBET (1)

8 Industrial Research Contracts
= Draper Lab (2 year project)
= Raytheon (3 year project)
= SRI International (Two 3-year projects)
= Nano CVD Co. (2 year project)
= Plasma Therm, LLC. (1 year project)
= Novellus Systems (3 year Project)
= Modelithics Inc. (multiple year effort)

NOVELLUS = Florida High Tech Corridor gk!.,r{lr}:gﬁglgglgf



Thanks to My Dedicated Graduate Students
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Af/f (ppm)

Temperature Coefficient of Micro-Resonators

Vector Network Analyzer
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Mechanically-Coupled Filters

Transmission (dB)

Array of 3 X 2 mechanically
coupled ZnO-on-silicon resonators

LN
o o

20 pum-radius disk
resonators

f.= 112.85 MHz
1 BW=1.76%
IL=5dB
y My
) [
¢ \
¢ \\
1 r
o’ Yo
boeamameoepeoen o"- T e o N o )
1 , =1 kQ Termination
= «50 Q Termination
90 95 100 105 M0 115 120 125
Frequency (MHz)

130

o UNIVERSITY OF
l_}gl* SCUTH FLORIDA
s\ COLLEGE OF INGINIERING



Current State of the Art

Modes of Vibration and Frequency

Mode of Vibration

Frequency Range

Frequency Equation

Flexural -Mode 10 kHz — 10 MHz f, oc 12 =

1=V p

1 |E
Contour- Mode 10 MHz — 10 GHz f, oc — [—
21\ p
. 1 E

Thickness- Mode 800 MHz = 20 GHz f, oc

2T \ p

T |E

Shear- Mode 800 MHz — 20 GHz f, oc 2\ 5
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Coupling Beam for Mechanically-Coupled Filter
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Coupling Beam for Mechanically-Coupled Filter
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Coupling Beam for Mechanically-Coupled Filter
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Coupling Beam for Mechanically-Coupled Filter
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Mechanically-Coupled Filters
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Thickness-Mode Piezoelectric Resonator (2.4-4.8GHz)
...
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