Atomic Layer Deposition (ALD) Enabled RF MEMS Resonator by IC-Compatible Process

Mian Wei, Jing Wang

Department of Electrical Engineering University of South Florida

Introduction

Capacitively-transduced MEMS resonators

- \checkmark Higher Q-factor (Q > 160,000)
- \checkmark High frequency (f > 6GHz)
- ✓ Radius controlled frequency
- ✓ Low temperature coefficient
- × High impedance
- × Low power handling

Motivation

In spite to high-Q, concerns about *impedance matching* and *power handling* of the micromechanical resonator reveal due to its orders of magnitude smaller dimensions comparing to its bulky counterparts, such as quartz crystals.

Impedance Matching

- ✓ Reduced resonator-to-electrodes gap
- ✓ High dielectric material
- ✓Increased overlap area

Power handling

✓ Large arrays of identical devices

Impedance Matching Design

Wine-Glass

Disk Resonator

Wine-Glass

Disk Resonator

ALD Solid Gap vs. Air Gap

- Ease of the process
- Eliminate the particles
- ➤ Reduce characteristic impedance

 d_o : disk-to-electrode gap

 ε_r : dielectric constant of the gap material

 A_o : overlap area

Adventages of ALD Ultra Thin (~nm)

- ➤ High-k Dielectric Material
- ➤ Atomically Controlled Thickness
- ➤ Low Temperature (~100 °C)
 ➤ Conformal and Uniform

Savannah 100 ALD Cambridge Nanotech Inc.

Fabrication

SEM Photo of a Fabricated Device

Switchable Channel-

Selected Bandpass Filters

High Power Handling Design

 $P_{0\max,n} = n \cdot \frac{\omega_0}{Q_n} k_r a^2 d_0^2 \quad \text{(n: number of resonators)}$

A $n \times n$ array has capability of increase the power handling by a factor of n^2 , ideally.

Two 4-disk array resonators coupled

to realize a 2-resonator filter with an

array-reduced impedance.