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Introduction
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What is HIFU*?What is HIFU ?

 Ellipsoidal shaped focal zone.p p

 Focus location depends on tranducer
geometry and operating frequency.

 Acoustic energy concentrartion at the Acoustic energy concentrartion at the
focus.

 Quick temperature elevation over 56°C 
which produces coagulative necrosiswhich produces coagulative necrosis.

 Treatment of benign and malign tumors

 Non-invasive technique.

 Exposure time < 10 s.

* High-intensity focused ultrasound4



Heating modelingHeating modeling

 Exposure time to HIFU for lesion formation Exposure time to HIFU for lesion formation.

 Tissue/phantom thermal properties temperature Tissue/phantom thermal properties temperature
dependence.

 Temperature gradient around focal region.

 Media changes due to HIFU and heating.
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ObjectiveObjective

To model the HIFU induced heating by means of Finite
Element Method as a function of the applied electricpp

potential to the transducer.
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Methods
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HIFU transducer electric
impedance measurementimpedance measurement

• Impedance analyzerp y
• 2 MHz concave transducer
• Frequency scan from 10 kHz to 4 MHz
• 500 mV excitation signal
• Measurements in air and bidistilled• Measurements in air and bidistilled

water
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HIFU acoustic field
characterizationcharacterization

 Low power measurements Low power measurements
using a PVPF-Z44-0400 
hydrophone. 

 1.965 MHz/ 10 Vpp burst 
with a repetition frequency 
of 10 Hz.

 X and Y axis resolution of 
0.1016 mm.

 Z-axis resolution of 1 mm.
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HIFU transducer FEM 
electric impedance modelingelectric impedance modeling

System equations

 = cE – eTE
D = e + 0rTE

where,

, stress tensor 
cE  elasticity matrixcE , elasticity matrix
eT , electro-mechanic coupling 
matrix
E, electric field
D, displacement vector
e, deformed tensor
0, vaccum permitivity
rT , relative permitivity

Piezoelectric material: 
PZT-8

rT , relative permitivity
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HIFU transducer FEM
electric impedance modelingelectric impedance modeling

Boundary constrains:Boundary constrains:
• 1, axial symmetry
• 2, fixed
• 3 and 4, free

Electric boundary conditions:
• 1 and 2, zero charge/symmetry
• 3, ground, g
• 4, electric potential of 500 mV

Mesh:
Element material: 

PZT-8
• 2794 triangular elements

Frequency response:
• 100 kH  t  4 MH• 100 kHz to 4 MHz
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HIFU transducer
electric impedanceelectric impedance

 Electric impedance in transducer face

I=∫SJ·dA
Ze=VB-A / I

where,
J d d ’ fJ, current density in transducer’s face
A, transducer face area
V electric potential between both electrodes A and BVB-A , electric potential between both electrodes A and B
I, current
Ze , electric impedancee , p
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2D axisymmetric
FEM equationsFEM equations

2

Wave equation for time-
harmonic analysis

Reduced Bio-heat equation for
transient response
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HIFU field FEM modelingHIFU field FEM modeling
Boundary conditions

Axial symmetry: 1, 2 and 3
Continuity: 7Continuity: 7
Impedance:  4 and 9
Sound hard wall: 8
Normal acceleration: 6

Subdomain properties
Water:

Density: 1000 kg/m^3Density: 1000 kg/m 3
Sound speed: 1500 m/s

Piezoelectric excitation voltages
5 V 10 V 15 V 20 V5 V, 10 V, 15 V, 20 V

Mesh
5494 triangular elementsg

39589 quad elements
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HIFU induced heating
modelingmodeling

Boundary conditions
Axial symmetry: 1, 2 and 3
Continuity: 4, 5, 6, and 9
Temperature:  7, 8 and 10
Thermal insulation: 13

Subdomain properties
Water:

Density: 1000 kg/m^3
Sound speed: 1500 m/s

Phantom:
Density: 1045 kg/m^3
Sound speed: 1540 m/sSound speed: 1540 m/s

Mesh
5494 triangular elements

39589 d l t39589 quad elements
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HIFU induced heating
modelingmodeling

S bd i iSubdomain properties

Water:
Specific heat capacity: 4000 J/(kg*K)p p y J ( g )
Thermal conductivity: 0.58 W/(m*K)

Phantom:
Specific heat capacity: 3411 J/(kg*K)Specific heat capacity: 3411 J/(kg*K)

Thermal conductivity: W/(m*K)
Fixed and temperature dependent

External heat source: Qext
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Phantom thermal
conductivityconductivity

 Fixed: 0.5 W/(m*K)
 T t d d t ** Temperature dependent **

y = 9E-05x2 - 0.0536x + 8.8805
R² = 0 9906
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Results
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HIFU transducer electric
impedance measurement and p

modeling
10
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HIFU acoustic
characterizationcharacterization
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HIFU field modelingHIFU field modeling
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HIFU field modelingHIFU field modeling
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Heating modeling @ 5 Vp
excitationexcitation

k constant k (T)
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Heating modeling @ 10 Vp
excitationexcitation

k constant k (T)
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Heating modeling @ 15 Vp
excitationexcitation

k constant k (T)
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Heating modeling @ 20 Vp
excitationexcitation

k constant k (T)
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DiscussionDiscussion
 Nonlinearity propagation was neglected.

 Inclusion of temperature dependent tissue/phantom
properties.

 Electric power loss: transducer efficiency.

 Pressure acoustic propagation at beam path difference
with measured data.

 Heat model validation with measurements in phantom.
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ConclusionsConclusions
 Concave radiator electric impedance model show great concordance with

measurements in both air and water media.

 Focused acoustic field depend on piezoelectric element properties which vary
according on its fabrication.

 A  li it ti l t d  di t ib ti l b th As nonlinearity propagation was neglected, pressure distribution along beam path
and the acoustic field did not showed differences.

 Maximum temperature increment was expected on heating modeling with thermal
conductivity as a function of temperature.

 Normalized heating along beam path with thermal conductivity as a function of 
temperature showed a bigger heating area than heating with constant thermalp gg g g
conductivity.

 Model improvement.
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