

ActiveNeedle Technology for Safe Needle Intervention

Muhammad Sadiq* Graeme McLeod George Corner Sandy Cochran

Presentation Outline

- Background
- Objectives
- PZT vs Mn:PIN-PMN-PT Devices
- Experimental Studies
- Summary
- Acknowledgement

BACKGROUND

21st April 2015

Unmet Clinical Need

Source: www.nibib.nih.gov/science-education

Source: www.nysora.com

Source: www.sportsandpain.co.nz

Source: www.sparrow.org/HealthLibrary

Unmet clinical need: To **improve accuracy and safety** by reducing needle placement errors

Unmet Clinical Need

40M needle based procedures conducted each year in the USA alone

- Nerve Damage: 1 in 10 patients report numbness
- **Repeat Biopsy:** Inadequate biopsies in 2 in 10 cases
- Increased Cost: \$20 for every minute in the operation room

Needle misplacement costs over \$ 1 Billion p.a. (www.inneroptic.com)

Solution – ActiveNeedle

A award winning device for precision needle targeting (WO 2014140556 A1, 2014)

Pre-clinical Prototype

Needle Actuating Device in Operation

Potential Clinical Benefits

Increased Visibility: Especially at angles steeper than 45°

Reduced Deflection: Especially at depths deeper than 3 cm

Reduced Pain/Trauma: Better penetration through tissue interfaces

Solution – ActiveNeedle

ActiveNeedle makes the standard needle visible in colour under Doppler ultrasound – (a) Inactive and (b) Active Needle

ActiveNeedle reduces penetration force consequently reducing tip deflection - (a) Inactive and (b) Active Needle

Effect of Activation on Needle Penetration Force

Tissue Mimicking Phantom Model

Thiel Embalmed Cadaver Model

OBJECTIVES

Objectives

- Fabricate and characterize **PZT4** and **Mn:PIN-PMN-PT** devices
- Observe the **effect of pre-stress** on transducer performance
- Observe the **effect of piezoelectric materials** on device performance

PIEZOELECTRIC MATERIALS	k ₃₃ -	d ₃₃ pC/N	s ₃₃ m²/N	Q _М -	T _c ℃	E _c kV/cm
PZT 4	0.68	328	19.6	500	320	14.2
PZT8	0.67	275	18.3	1000	300	19
PMN-PT	0.95	1540	67.7	100	135	2.3
PIN-PMN-PT	0.92	1320	57.3	180	197	5.0
Mn:PIN-PMN-PT	0.90	1341	62.4	810	193	6.0

Comparison between various piezoelectric materials based on key parameters

PZT4 Vs Mn:PIN-PMN-PT DEVICES

Ring Analysis

- Piezoelectric rings (OD = 10mm, ID = 5mm and t = 2mm):
 - Navy Type I / PZT4 Piezoceramic (Meggitt Ferroperm, Denmark) and
 - Gen. III / Mn:PIN-PMN-PT Piezocrystal (TRS Technologies Inc., USA)

- **Numerical Analysis:** PZFLex (Weidlinger Associates Inc, USA)
- Experimental Analysis: Z Analyser (Agilent Tech. 4395A, UK) / Laser vibrometer Scanner (Polytec Ltd, London, UK)

Ring Analysis

Numerical vs experimental impedance magnitude data of Mn:PIN-PMN-PT ring

Experimental Setup for Laser Vibrometer System

Numerical vs experimental mode shape of PZT4 ring

Finite Element Analysis

Numerical analysis prior to fabrication:

Requirements:

- Longitudinal mode vibration
- Max. displacement at the collet
- Nodal plan at the back mass

Displacement plot of PZT transducer at f = 69.85 kHz

Fabrication – Application of Pre-stress

• Stress-Charge method was used to apply and control pre-stress

- 55 MPa (PZT) and 35 MPa (Mn:PIN-PMN-PT) were applied
- Variation in key parameters was observed for every 5 MPa

Fabrication – Pre-stress

Impedance magnitude (a) & phase (b) plots of Mn:PIN-PMN-PT transducer with pre-stress

Impedance magnitude (a) & phase (b) plots of PZT transducer with pre-stress

Parameters	PZT4 based Transducer	Mn:PIN-PMN-PT based Transducer
Frequency, F _e	个69.61	个52.74
Impedance, Z _e	↓89.45	↓92.36
Coupling coeff., k _{eff}	个8.00	个61.17
Quality factor, Q _M	个203.24	个154.69
Capacitance, C _{Lf}	个5.94	个20.22

Variation in key properties with applied pre-stress

Characterization - Methods

Small Signal Characterization

To determine the **performance measurement parameters**

- Electrical (f_e) and mechanical (f_m) resonant frequencies
- Electrical impedance (Z_e)
- Coupling coefficient (k_{eff})
- Mechanical quality factor (Q_M)
- Low frequency capacitance (C_{LF})

Large Signal Characterization

To determine the **displacement amplitude** at the needle tip

Characterization - Results

Small Signal Characterization

- Numerical Vs Experimental Good agreement
- Large variations in Z_e and Q_M due to pre-stress
- Mn:PIN-PMN-PT transducer has lower F_e , higher k_{ef} and comparable Q_M
- Standard G20 needle introduced new resonance

	Parameters			Mn:PIN-PMN-PT			
		trans	ducer	transducer			
		Num.	Exp.	Num.	Exp.		
	F _e (kHz)	69.85	69.85	63.70	59.95		
	Z _e (Ohms)	140	392.76	18.5	44.98		
	k _{eff} (-)	0.27	0.26	0.48	0.50		
	Q _M (-)	310.2	69.85	530.8	47.96		
	Parameters	PZT4 transducer		Mn:PIN-PMN-PT transducer			
ff	F _e (kHz)	39.59 1682.23		35.55			
	Z _e (Ohms)			382.72			

Comparison between PZT and Mn:PIN-PMN-PT Devices

0.27

93.63

0.16

132.06

k_{eff} (-)

Q_M(-)

Comparison between PZT and Mn:PIN-PMN-PT Devices

Large Signal Characterization

- Generally, large tip displacement recorded
- Mn:PIN-PMN-PT had approx. 2 times displacement

PRE-CLINICAL STUDIES

Experimental Setup

Pre-clinical trials were carried out on soft embalmed Thiel cadaver models

Results

Needle Visibility Test

- Needle **tip was visible** in both cases
- Mn:PIN-PMN-PT more responsive at 10V_{p-p}

Out of plane images of standard needle driven by PZT device

Needle Penetration Force Test

- Both devices reduced penetration force
- Mn:PIN-PMN-PT device showed significant reduction compared with PZT (40% : 5%)
- Reduced **force** = reduced **tip deflection**

SUMMARY & ACKNOWLEDGMENT

Summary

- **Clinical Need:** To improve needle targeting by reducing needle placement errors
- Solution: ActiveNeedle for enhanced visibility and reduced tip deflection
- Current work: Mn:PIN-PMN-PT based device has shown clear performance benefits:

Parameter	PZT	Mn:PIN-PMN-PT
Frequency, f (kHz)	69.850	59.950
Electrical impedance, Z _e (Ohms)	392.76	44.98
Coupling Coefficient, k _{eff} (-)	0.26	0.50
Quality factor, Q_M (-)	69.85	47.98
Tip displacement, X (μm)	6.57	10.3

- Mn:PIN-PMN-PT device further **improved tip visibility** and **reduced penetration force**
- Mn:PIN-PMN-PT can **supersede** traditional piezoceramics in a range of applications

Acknowledgement

- Xiaochun Liao, PhD student
- The **UK EPSRC** for funding under the USNOBS project
- **TRS Technologies** for the supply of Mn:PIN-PMN-PT piezocrystals and
- Weidlinger Associates (PZFlex) for the FEA research license

THANK YOU!

AWARDS & RECOGNITIONS

- Converge Challenge 2nd Prize, 2014
- RSE Enterprise Fellowship Award, 2014
- OBR OneStart EU Competition 3rd Prize, 2014
- HTC Best Novel Idea, 2014
- EPSRC Funded Venture Award, 2012

ActiveNeedle Precision Targeting

Dr. Muhammad Sadiq

Email: <u>M.R.Sadiq@dundee.ac.uk</u> Tel.: +44 (0)1382 383983 Web.: <u>www.imsat.org</u>

