Bio-History of Kenji Uchino

University professor = 40 years Tokyo Tech-10 yrs, Sophia Univ-8 yrs, Penn State-24 yrs
Company executive = 21 years
Government Officer = 4 years
Japanese 20 years vs. US 20 years
"One step ahead"

Age 40s = Academic initiative Age 50s = Entrepreneur Age 60s = Program officer

 "Discover/Inventor"
 Piezoelectric ML actuators, PMN electrostrictors, Relaxor single crystals, Micro motors, Piezoelectric transformers, HiPoCS

6. Summary

Fundamental							
Pie	Anisotropic Losses in Piezoelectric & Piezomagnetic 10 independent parameters for 6mm / ∞mm materials (polycrystalline) – 20 loss factors						
10 inde materi							
$\underline{\varepsilon} = \begin{bmatrix} \varepsilon_{11} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{13} \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 6_{33} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & 0 & 0 & 0 \\ c_{12} & c_{11} & c_{13} & 0 & 0 & 0 \end{bmatrix}$						
$\underline{d} = \begin{bmatrix} 0 \\ 0 \\ d_{31} \end{bmatrix}$	$ \begin{array}{c} 3 \\ 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & d_{15} & 0 & 0 \\ d_{31} & d_{33} & 0 & 0 & 0 \end{array} \right] \mathcal{L} = \begin{bmatrix} c_{13} & c_{13} & (c_{33}) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \left(\frac{c_{11} - c_{12}}{2}\right) \end{bmatrix} $						

R	undamental							
	Loss Anisotropy Determination							
	Materia	Material parameters of ∞mm/6mm:						
	8	$\varepsilon_{33}^{X}, \varepsilon_{11}^{X}, \varepsilon_{33}^{X}, \varepsilon_{11}^{X}, \frac{16 \text{ loss factors can be derived}}{2}$						
	s_{11}^{E} , s_{12}^{E} , s_{13}^{E} , s_{33}^{E} , s_{44}^{E} , s_{11}^{D} , s_{12}^{D} , s_{13}^{D} , s_{33}^{D} , s_{44}^{D} ;							
	$d_{3L}, d_{33}, d_{15}, h_{3L}, h_{33}, h_{15}.$							
	Loss factors of APC 841 (~10 $^{-3}$) from k_{31} and k_{33} modes							
	tan¢'11	tano '33	tand'33	tan0'31	tan0'33			
Ι	0.77	0.90	3.5	3.7	2.5			
	tan¢ 11	tanø 33	$tan\delta_{33}$	$tan \theta_{31}$	tan ₀₃₃			
Τ	0.44	0.54	3.1	0.25	1.5			
 a) Piezoe lectric loss factors are not small: tanθ'> (½)(tanδ' + tanφ') b) Intensive losses are larger than the Extensive losses. c) Loss anisotropy 								
	Uchino, Zhuang and Ural, J. Adv. Dielectrics, 1(1), 17-31 (2011).							

Loss Mechanism

Four Types of Losses in Piezoelectrics

- (1) Domain wall motion
- (2) Fundamental lattice contribution, which should also happen in domain free monocrystals
- (3) Microstructural contribution, which occurs typically in polycrystalline samples
- (4) Conductivity contribution in highly-ohmic samples

In typical piezoelectric ceramics, the loss due to the domain wall motion significantly exceeds the other three types.

Summary

SUMMARY

- 1. Phenomenological equations derived for piezoelectrics & magnetostrictors: dielectric, elastic and piezoelectric losses; magnetic, elastic and piezomagnetic losses. Coupling losses are significant (not negligible).
- 2. Three losses can be determined from Q_M values for the resonance and antiresonance ranges.
- Three high-power characterization methods (HiPoCS) for determining Q_M's; (1) admittance spectra under a constant vibration velocity, (2) burst mode (mechanical drive) to eliminate the heat generation, (3) precise input electric power.
- 4. Losses in magnetostrictors: 10 times of losses in piezoelectrics
- 5. Most efficient driving frequency exists between the resonance and antiresonance frequencies.
- 6. High power origin: (1) Domain wall pinning, (2) Internal bias. Internal bias generation due to oxygen vacancy diffusion seems to be the best explanation.
- 7. High power FOM: Mech. Energy Density = $(1/2)\rho V_{rms}^2$

