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Motivation

� localization
� resection control
� navigation of burr hole procedures and 

endoscopes, neuronavigation
� neurovascular examinations
� quantitative sonography and 

parametric imaging 

Goals of intraoperative ultrasonography
in neurosurgery:

?
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courtesy of A. Jödicke, Neuro-surgical Clinic, 
Justus-Liebig-University, Giessen, Germany

Interpretation of sonographic images
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Parametric imaging

Parametric image – contrast generated by
tissue specific parameters

- tissue state and function
- quantitative data 
- morphology

Conventional B-mode – contrast depends on 
echo amplitude

- morphology
- biometry (distance, area, volume, angle)
- qualitative access of texture 
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Parametric imaging:
tissue specific parameters

�texture parameters:

� 1st order statistics
(gray value histogram 
characteristics):
mean, standard deviation, skew, 
curvature, ...

� 2nd order statistics
(relation of pixels to the 
neighborhood):
co-occurrence-parameter, image 
patterns, fractal dimension, …

� spectral parameters:

� attenuation
� backscatter
� IBC
� IOA
� …
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Foto Op

Ultrasound

Navigation
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Overview: Ultrasound-Echo-Data

raw-data

(r-θ format)

rf-data

(r-θ format)

video-data

(x-y format)

beam
former

pre-
processing

scan
converter

post-
processing

screentransducer
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B-mode image (reconstructed from rf data)

phantom

brain tissue
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Ultrasound – Tissue interaction

Main effects dependent on frequency:

absorption

scattering

attenuation  αααα(f) = ααααa(f)+ ααααs(f) 

Size:
specular

ka(↓)
Rayleigh

Shape:
isotropic
quasi-cylindrical
quasi-planar

Distribution:
scatterer density
regular
non-regular

Intensity loss due to relaxation processes
(macro-) molecular levelapp. 60 – 70 %

app. 30 – 40 %
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s....... depth
f ....... frequency 
α0...... attenuation of intermediate tissue
s0....... length of intermediate tissue
WS/E... electro acoustic properties of the probe
T0...... transmission coefficient of the probe-tissue interface
D....... diffraction function „transmitting“
E....... diffraction function „receiving“
H.......  tissue characteristics
VTGC... time-gain-compensation
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Transmitted
signal intermediate tissue sound field function

Model of the signal path
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with correction
constant slope of amplitudes 

(linear in dB)

without correction
overestimated amplitudes 
in focal zone

Soundfield correction
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Estimation of 
sound field correction functions

• calculation (spatial impulse response - Field II)

• hydrophone

• plane reflector

• thin wire or point reflector

• tissue mimicking phantom

• normal tissue
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Principle of parameter estimation

depth

sound field
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depth
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Multi narrow band method
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Backscatter coefficient
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Frequency dependent attenuation
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Frequency dependent attenuation
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Attenuation at 5 MHz

parenchyma edematous tissue meningioma
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Relative backscatter coefficient (5 MHz)

parenchyma edematous tissue meningioma
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Power spectral density (5 MHz)

parenchyma edematous tissue meningioma
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Integrated attenuation coefficient

parenchyma edematous tissue meningioma
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Slope of attenuation

parenchyma edematous tissue meningioma
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Relative integrated backscatter coefficient

parenchyma edematous tissue meningioma
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Conclusions

� Significant differences for all attenuation paramet ers
(e.g. attenuation at 5.0 MHz
normal brain vs. edema: P = .00002
normal brain vs. meningioma: P = .000004
edema vs. meningioma: P = .002

� Backscatter parameters allow significant 
differentiation between:
- edema and meningioma

(at low frequencies and at the probe’s center frequ ency)

- normal brain tissue and meningioma
(at low frequencies)

� Normal brain is not significantly distinguishable 
from edema by backscatter parameters
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Perspectives

� analysis of additional tumor types

� analysis of tumors with 
infiltrating character
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Summary

� Meningioma was used as a basic model due to its 
clearly definable margins

� Spectral analysis of intraoperatively acquired rf-da ta 
was able to significantly differentiate among norma l 
brain, edematous tissue, and meningioma

� This could form the basis for intraoperative tissue 
characterization, thus allowing a more precise 
definition of tumor borders and improve attempts of  
radical resection


