Propagating Ultrasound Energy Through a Catheter Around Bends

For Treatment of Acute schemic Stroke

April 14th, 2010

Societal Impact

- $3^{\text {rd }}$ Leading cause of death in the United States $(\approx 150,000)$
- \#1 cause of major adult disability
- Estimated $\$ 65$ billion in annual direct and indirect costs in the US alone.
- Largest cost contributors are hospital costs, at home nursing, and lost productivity.

Different Types of Strokes (or other ischemic events)

- 13% of strokes are hemorrhagic
- Not the focus of this presentation
- Bleeding in and around the brain
- Most interventional treatments in the neurovascular system are focused around aneurysms, one cause of some hemorrhagic strokes.
- $\mathbf{8 7 \%}$ of strokes are ischemic (insufficient oxygenation)
- Decreased blood flow to a region of the brain causing various cell death mechanisms
- Few treatment options
- Transient ischemic attacks (TIA)
- Temporary blockages resulting in no apparent neurological deficit.
- Not a stroke

Ischemic Stroke

Time is Brain!

- Cells die almost immediately
- Cells continue to die through several different pathways long after symptom onset

Panorama of Blood Flow to the Brain

Key Concept: The Ischemic Penumbra

This is brain that can be saved!

Large vessel ischemic ntralen

Collateral flow

Ischemic Penumbra

Blood Flow, Time, Core \& Penumbra

Gonzalez, R.G., Hirsch, J.A., Koroshetz, W.J., Lev, M.H., Schaefer, P., Acute Ischemic Stroke Imaging and Intervention. ©2006
Springer-Verlag Berlin Heidelberg, Germany

Transmission of the Longitudinal Wave

This is our region of interest...

Converts longitudinal vibration generated by the transducer to transverse motion in the Wire's Active Zone

Amplitude Terminology

Anatomical Challenges in Stroke

http:/Iwww.neuropat.dote.hu/tablelangio.htm

In-vivo Recanalzation with 40kHz Prototype

Acute animal study with Ajay Wakhloo \& Matt Gounis (Dec 21, 2006) Feasibility efficacy test in porcine model

- Autologous clot injected into Ascending Pharyngeal Artery (APA) "Free Tip"
- Completely occlude $4-5 \mathrm{~cm}$ length of APA
- 156 cm long waveguide; .004 " \varnothing Active Section; "Free Tip"
- Achieve nearly complete re-canalization of APA in minutes

Study Goal and Approach

- Goal:
- Transmit energy, sufficient to emulsify clot, through tortuosity representative of the neurovascular anatomy
- Approach:
- Develop a data driven understand of how acoustic waves travel around bends
- Experimentally identify controllable parameters in our system that have a BIG IMPACT on transmission

Bends Reflect Waves

- If bend is small enough:
- Wave will reflect
- Reflections from bend = Reduced Transmission

$$
\begin{gathered}
\text { BASELINE } \\
\text { TRANSMISSION } \\
\text { EXPERIMENTS AT } \\
40 \mathrm{KHZ}
\end{gathered}
$$

Tortuosity Causes Loss from Reflections at Bends

Baseline Experiments

- Transducer/Generator response to different waveguide bend configurations:
- Single Bend Pullbacks
- Double Bend Pullbacks
- Observe the longitudinal wave itself:
- Single Bend Longitudinal wave Transmission (Laser)
- Big Impact parameter identification

Laser Vibrometer Measurements

- Non-contact measurement
- Measure transducer output
- Characterize waveguide transmission up to the active zone Catheter

Measure acoustic waves in the transducer and waveguide proximal to the active zone

Characterization Pulbacks for 40kHz System

Single Beabidicokitinuous Pullbacks...

 ultimately most telling)

- High Power Locations separated for all bend sizes by roughly $6 \mathbf{c m}$ (at 40 kHz) - A1 (transducer amplitude) with Laser

$$
\text { - At } 40 \mathrm{khz} \quad \lambda(\text { Wavelength })=12.3 \mathrm{~cm} \quad 1 / 2 \boldsymbol{\lambda}=\mathbf{6 . 1 6} \mathrm{cm}
$$

- Difference in power between high and low power locations increases an bend o, decreases
- Periodic audible \& visible (active section movemént)' changes at 2" bénd (at 40 kHz) estimated to be the Critical Bend Diameter (CBD)
*Power is a measure of generator response to impedance changes

Double Bend Pulbacks

- All observations from single bend pullbacks are present and further compounded with two bends
- If a bend is present in the waveguide which is both:
- At or below CBD
- In a low power location
- Then the power supply does not respond to changes in impedance or load if they occur distal to the bend.
- It seems that in the anatomy for stroke, the tightest bends tend to be the most distal (good)

Now on to the wave itself...

Needed to Answer Some Primary Questions

- What does the actual wave look like before and after a bend?
- What happens to the wave in different bend configurations?

Then...

- What effect do we have on transmission by changing drive amplitude (A1) and waveguide diameter (some simple controls)?

Single Bend: Transmission Experiments
 Experimental Setup
 Amplitude "Maps"

- Variables
- Bend Size
- Bend Location (fixed in high or low power)
- Waveguide Diameter
- Drive Amplitude
- Measures
- Amplitude "Maps" were taken of the proximal wave and distal wave directly off of the waveguide with the laser vibrometer
- Generator Electrical Response to configuration

A2 After the Bend

- As Bend ø Decreases to or below the Critical Bend Diameter (CBD):
- A2 After the Bend generally decreases
- Low power bend locations have smaller A2 after the bend than high power locations
- The difference between A2 after the bend for high power locations and low power locations increases

Limitations of a 40 kHz Ischemic Stroke System

- 40 kHz system was sufficient to prove basic feasibility:
- System can transmit effective acoustic energy over a longer waveguide with a thin active section for neurovascular applications
- But...
- Cannot transmit sufficiently through clinically relevant tortuosity (i.e., carotid siphon)

The solution is to increase the frequency of the system!

http://www.neuropat.dote.hu/table/angio.htm

HIGHER DRIVE FREQUENCY

The theory begins with the relationship between Critical Bend Diameter (CBD) and Wavelength (λ)...

Reduce Longitudinal Wavelength (λ) to Minimize Reflections

THEORY:
As λ decreases, it requires smafior diameter bends to reffecterhe Wave

Choosing Optimal Longitudinal Wavelength (λ)

- We want to pick a λ that yields:

Target CBD = 1/8" (For Stroke)

So that any bend above that diameter is transparent to the wave...

Wavelength is a Function of Frequency

High Frequency Transducer Continuous Pullbacks

Pullbacks: Identifying Critical Bend Diameter

CBD was marked by periodic audible \& visible (active section movement) changes

- Measures
- Generator Electrical Response
- A1 (Laser)
- Periodic audible and visible changes during pullback
- Variables:
- Bend Diameter (3", 2" 1.5", 1", .75", .5", .25")

High Frequency Delivers Energy Around Smaller Bends

Critical Bend Diameter as a Function of Driving Frequency

[^0]
[^0]: * Leszek Filipczynski, Propagation of Ultrasonic Waves in Spirals. Warsaw, Poland, 1962.

