

Quantitative Ultrasound Computed Tomography using phase-insensitive pyroelectric detectors

Bajram Zeqiri Acoustics & Ionising Radiation Division National Physical Laboratory, UK

42nd UIA Symposium, Orlando, Florida – 24th April 2013

Presentation Content

- Motivation
- PI detectors
- UCT System design
- Results
- Summary

Motivation

- Ultrasonic Computed Tomography (UCT) is being investigated for whole breast applications;
- Reconstructions are strongly affected by artefacts, particularly when based on ultrasound attenuation of tissue;
- These artefacts arise due to the nature of the detectors used, in particular that they are *phase-sensitive*;
- In the 1980's, *phase-insensitive* detectors based on Cadmium Sulphide acoustoelectric sensors (1980s) seemed to show promise, but were too insensitive;
- This presentation describes *phase-insensitive* detectors that exploit the pyroelectric effect in a thin polymer and their application to UCT.

Computed Tomography (CT)

2-dimensional image

Projections

Characteristic properties of biological tissues

Speed of sound [m/s]	Fat	Breat fibroglandular tissue	Fibroadenoma	Carcinoma	Cyst
Wiskins <i>et al.</i> 2011	1430 -1460	1550 -1575	1550 -1585	1585 -1630	1520-1540

Refraction of ultrasonic wave-fronts

 θ_{t}

 C_2

 C_1

 θ_{i}

<u>Solution</u>: need a large omnidirectional sensor to avoid missing refracted radiation

Distortion of travelling acoustic wave-fronts

Biological tissue	α (dB cm ⁻¹) 1 MHz	α (dB cm ⁻¹) 2.5 MHz	Speed of sound (ms ⁻¹)
Subcutaneous fat	0.89	1.71	1470
Internal fat	0.92	1.8	1470
High attenuation tumour	0.92	<u>3.2</u>	1549
Cyst	0.06	0.38	1569
Glandular parenchyma	1.02	2.94	1515

Duric et al. Development of ultrasound tomography for breast imaging, Medical Physics, 32 (5), 2005.

Phase-insensitive (PI) detectors

B. Zeqiri, P. N. Gélat, J. Barrie and C.J. Bickley. "A Novel Pyroelectric Method of Determining Ultrasonic Transducer Output Power: Device Concept, Modelling and Preliminary Studies", IEEE Trans. Ultrason., Ferroelectr., Freq. Contr., Vol. 54, No. 11, 2318-2330, 2007.

Directional Response

PI, PS comparison for two detector apertures

UCT scanning platform

Pyroelectric UCT System

Collimating the acoustic field

Collimating mask

Measurement of the acoustic pressure distribution

- Transducer alone $\Phi = 12.7$ mm;
- -6 dB Beam-width ≈ 8 mm

- Masked transducer mask, $\Phi = 6$ mm;
- -6 dB Beam-width ≈ 3 mm

Results: projections

PS vs PI detector responses

Phase cancellation

Homogeneous Test Object

Experimentally derived projection

Results – homogeneous Test Object

Attoniction (AD)

Results: UCT reconstructions

Water-filled, thin-walled tube (PETG – 0.38 mm and O/D 20.68 mm).

PS

PI

Experimental conditions

- Plane-piston transducer $\Phi = 12.7$ mm, @ 2.05 MHz;
- Detector diameter: 13mm;
- Test Object Detector: 18mm;
- Two-phase polyurethane Test Object:

Polyurethane properties

Material type	Component of TO	Sound speed (m/s)	Attenuation coefficient (dB/cm)
Shore A=35	Background matrix	1538*	5.1 (@ 2.05 MHz)
Shore A=55	Inserts	1567*	7.5 (@ 2.05 MHz)

* Speed of sound in water at 20 °C is 1482.4 m/s

NO MASK - PI

MASK - PI

- Transducer Φ = 12.7 mm;
- Sensor $\Phi = 13 \text{ mm}$

- Transducer + 6 mm Φ mask;
- Sensor Φ = 20 mm

NO MASK - PI

- Transducer Φ = 12.7 mm;
- Detector Φ = 13 mm

• Detector Φ = 20 mm

Transducer + Mask, 6 mm Φ;

MASK - PI

Small area detectors: masked transducer

Quantitative analysis

Piezo (PS) Pyro (PI) 20 20 18 15 15 16 7.3 dB cm⁻¹ 10 14 Attenuation (dB/cm) Attenuation (dB/cm) 5 5 ۲ (mm) Y (mm) 0 0 -5 -5 3 6 -10 -10 4 2 -15 -15 In. -20 ⊾ -20 -20 **`** -20 -15 -15 -10 -5 5 10 15 20 -10 -5 0 5 10 15 20 0 X (mm) X (mm)

2.05 MHz 12.7 mm transducer 13 mm sensor Rest of inserts: between 5.8 and 6.6 dB cm⁻¹ Actual attenuation = 7.5 dB cm⁻¹

Masked transducer

8 mm Mask, Pyro

6 mm Mask, Pyro

Actual attenuation = 7.5 dB cm⁻¹

6 mm mask, 20 mm sensor

Actual attenuation = 7.5 dB cm⁻¹

Summary

- Phase-insensitive (PI) sensors exploiting the pyroelectric effect have been used to reduce UCT artefacts;
- Artefacts arise due to refraction and phase-cancellation;
- PI sensor response is weakly dependent on direction;
- The need for large area PI receivers has been confirmed, the required spatial resolution being produced through the applied acoustic field;
- The PI sensors are non-optimized changes in sensor design will be needed to boost sensitivity and to improve sensor response time;
- The research has been submitted for publication within Phys. Med. Biol., "Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors".

Summary

bajram.zeqiri@npl.co.uk

Acknowledgements

Christian Baker, Melissa Mather, Giuseppe Alosa, Mark Hodnett

