IOWA STATE UNIVERSITY

College of Engineering

Welding Polymer Film for Packaging Applications with Ultrasonics

Jessica Riedl

MS Degree Candidate in Agricultural Engineering

Advised by Dr. David Grewell

IOWA STATE UNIVERSITY

Agricultural and Biosystems Engineering

Overview

- Objectives
- Background
- Equipment and Material
- Sample Creation Methods
- Performance Analysis
 - Visual Inspection
 - Ultimate Strength
 - Tearing Force
- Conclusions
- Future Research

Objectives

- Characterize the weldability of 6 coextruded polymer laminate films
 - Benchtop
 - Vertical Form Fill Seal at state of industry speed
- Determine optimal parameters for welding those materials
 - Energy
 - Amplitude
 - Weld Force

Background

- Applications include:
 - Food & Beverage
 - Cosmetic & Pharmaceutical
 - Chemical
- Advantages
 - Use energy only when needed ~.5sec/weld
 - No glue or consumables
 - High repeatability
 - Ability to seal through contaminates

Equipment

- Branson 2000 X single converter/booster
- 30kHz
- 6" long riser back
 rectangular slotted horn
- Horn gain = 3
- Booster gain = 1.5
- Amplitude approx 0.0032"

Machine Factors

Energy (J)	Amplitude (%)	Weld Force (psi) / Trigger Force (lb)	
400	100	70 / 125	
300			
250	90	60 / 100	
200			
100	80	50 / 75	

Material

Coextruded polymer laminate

- Thickness: 200g = 2mil = 0.002" = 50 microns
- Metallized biaxially oriented polypropylene (OPP)
- Polyethylene
- Variable layer:

ID	Variable Layer Description	Weight (g)
А	Printable OPP, lower friction	70
В	Printable OPP, lower friction	90
С	Thicker OPP, lower friction	90
D	High barrier OPP	80
E	OPP, both sides metallized	70
F	Metallizable base OPP	70

Cross Section View of Welded Sample

Visual Inspection

- Checking for:
 - Completeness (6" weld)

Burn-through of metallized layer

Modified ASTM D882 Peel Strength

Mean Ultimate Strength – All Materials

Mean Ultimate Strength – A

Mean Ultimate Strength – C

Mean Ultimate Strength – F

ASTM D1922 Tear Resistance

Mean Tearing Force – All Materials

Mean Tearing Force – E

Mean Tearing Force – C

Conclusions

- Ultimate Strength: Increased pressure, amplitude, and energy generally correlates with increased strength
- Tearing Force: No strong correlation, high energy results in breaks along weld due to micro holes
- Customer may have visual or barrier
 requirements that will reduce weld strength
- Trade-offs will be required to satisfy all requirements

Future Research: Vertical Form Fill Seal

VFFS

Vacuum Testing

Burst Testing

Acknowledgements

Sophie Morneau and Hans Neisser Branson Ultrasonics Corporation

Anonymous Material Supplier

Dr. David Grewell Iowa State University

Thank you!

Jessica Riedl jesriedl@iastate.edu

IOWA STATE UNIVERSITY

Agricultural and Biosystems Engineering