Overview of Biomedical Applications of Vibro-acoustography

Mostafa Fatemi Department of Physiology and Biomedical Engineering Mayo Clinic College of Medicine

> MAYO CLINIC

Credits, Acknowledgements, and Disclosure

Colleagues:

- Azra Alizad, MD
- Lance Mynderse, MD (Urol)
- Brian Davis, MD PhD (R Onc)
- Robert Fazzio, MD, PhD (Rad)
- Dana Whaley, MD (Rad)
- Max Denis, PhD
- Mahdi Bayat, PhD
- M. Mehrmohammadi, PhD
- Ivan Nenadic, PhD
- Matthew Urban, PhD
- James Greenleaf, PhD
- Adriana Gregory, BS
- Duane Meixner, BS
- Randy Kinnick, BS

Grant Support: NIH R01CA148994, R01 R01DK099231 R01CA168575 R01EB017213

Disclosure: Mayo Clinic and the author have financial interested in some of the technologies presented here.

Outline

• Ultrasonic (acoustic) radiation force concepts

- Vibro-acoustography:
 - Principles Vibro-acoustography
 - Features
 - Biomedical Applications
- Summary

Ultrasonic (Acoustic) Radiation Force

Demonstration of Ultrasonic "Radiation Force"

Acoustic Radiation Force Experiment

Generating different stress fields with URF

- Static force
- Harmonic force
- Localized force
- Transient force

Static Radiation Force

Continuous ultrasound wave:

Radiation Force = (Total Power) / Speed: F = P/c

Ultrasound Radiation Force in Biological Tissues:

c = 1.5 km/s, **F=0.66 mN/W**

Harmonic Radiation of Force: Amplitude Modulated Ultrasound

Localized Radiation Force

Key Concepts:

- Harmonic stress confined to a small region
- Conversion of ultrasound to audio range sound

Advantages of using Ultrasonic Radiation Force

✓ Remote target internal organs

☑ **Noninvasive** *non-ionizing*

☑ Localized focused point-force

Vibro-acoustography

Comparison with B-mode ultrasound imaging:

- Transmit and receive signals at *significantly* different frequencies
- Transmit and receive paths are different

Features of Vibro-acoustography

- Ultrasound resolution, acoustic image
- Speckle free
- Angle-independent: Specular surface
- Resonance mode imaging

In vivo Breast Vibro-acoustography

Combined Vibro-acoustography-Mammography System

Combined Vibro-acoustography-Mammography System

In vivo Breast Vibro-acoustography Normal Breast with Calcification

Depth =1.5 cm

Depth =2.5 cm

∆f = 50 kHz

Speckle free Imaging – Easier to see calcification

In Vivo Breast Vibro-acoustography

Papilloma

Depth 2.5cm, nsum

Lesion <u>not</u> seen in x-ray. In US it looks like a cyst, and ductal extensions not seen. VA is similar to MRI.

In Vivo Breast Vibro-acoustography

Invasive mammary carcinoma, Nottingham grade I (of III), with mucinous features (VAP037)

The x-ray shows a hint of a cancer lesion. Ultrasound shows a dark region about (arrow) 6 mm in diameter, however it is not easy to distinguish that from other regions. Vibro-acoustography clearly shows the lesion with clear boundary MF 10/09

Tissue Structure, Surgical Scar and Clips

Mammogram

VA (1.5 cm depth, 50 kHz)

Imaging Specular Object

Vibro-acoustography of Brachytherapy seeds & comparison with Ultrasound

Experimental Setup

Experiments: (1) Pulse echo ultrasound, (2) Vibro-acoustography

Brachytherapy Seeds

Vibro-acoustography and Ultrasound Imaging of Seeds as a Function of Angle Ultrasound (C-mode) Angle Vibro-acousotography OncoSeed 0° 10° 20° 30° 40°

Mitri, et al, Ultrasonics 49 (2009) 31–38

Sensitivity to Orientation

Ultrasound (C-mode)

Vibro-acoustography

Mitri, et al, Ultrasonics 49 (2009) 31–38

Resonance Mode Imaging (Vibroacoustic Spetrography)

Potential Application: Imaging implants

Resonance Mode Imaging: Mechanical Heart Valve

Fracture in the Heart Valve

Goal: Image to detect fracture

Resonance Mode Imaging (Vibroacoustic Spectrography)

48 kHz Whole valve 7.4 kHz Intact strut **2.04 kHz** Broken strut

 $\Delta f = f_2 - f_1$

Summary

- Overview of vibro-acoustography
- Radiation force of ultrasound
- Generate localized harmonic radiation force
- Conversion of ultrasound to low frequency sound
- Vibro-acoustography principles
- Features of Vibro-acoustography:
 - ✓ Speckle free Detecting calcifications
 - ✓ Independent of angle Specular reflectors
 - ✓ Resonance mode imaging Testing integrity

Thank you!

Mayo Clinic, Rochester, MN

Thank You!

