

GeorgeTown University Washington DC - April 20-22, 2015

Correlating inertial acoustic cavitation emissions with material erosion resistance

I. Ibanez¹, M. Hodnett², B. Zeqiri², M. N. Frota¹

¹Postgraduate Programme in Metrology (PósMQI) Catholic University of Rio de Janeiro, RJ, BRAZIL

² Acoustics and Ionising Radiation Division National Physical Laboratory (NPL) Hampton Road, Teddington, U.K.

Presentation roadmap

- 1 The context
- 2 Theoretical background
- 3 Experimental procedure
- 4 Analysis of the experimental results
- **5** Conclusions

Cooperation

[3] Ibanez I., MSc Dissertation, Measurement and influence of cavitation induced by ultrasonic on erosion of engineering materials (in Portuguese), Postgraduate Programme in Metrology (PósMQI), Rio de Janeiro, RJ, BRAZIL, 2014.

Experimental work developed by a postgraduate student of the Brazilian Metrology Programme in the Acoustics Laboratory of the National Physical Laboratory (NPL/UK)

Correlating inertial acoustic cavitation emissions with material erosion resistance

Main interest:

To study cavitation erosion on engineering materials

This work:

Cavitation erosion on Aluminium-Bronze

Cavitation induced by an acoustic medium

Occurs when an acoustic wave propagates in a fluid experimenting a reduction in pressure (rarefaction) with respect to the saturation vapour pressure.

Cavitation erosion: a gradual loss of material from a solid surface due to its continuous exposure to cavitation [ASTM G32-2010]

- 1. Formation of a bubbles on the surface of the material.
- 2. Collapses of the bubbles that damage the surface.
- 3. Modification of the surface and its exposure to erosion
- 4. Formation of new bubbles.
- 5. Collapses of bubbles eroding the surface even more.
- 6. Formation of deeper craters.

Standard ASTM G32-2010:

The erosion process undergoes the following stages:

- Incubation stage
- Acceleration stage
- Maximum rate stage
- Deceleration stage

Theoretical background

CaviMeter:

Designed by NPL to measure cavitation

Field of Application/Measurement range:

- Medical application: 40-60 kHz
- Sonochemical application ≈ 20 kHz

Technical characteristics of the Cavimeter:

Piezoelectric type PVDF, 110 microns, coated with a thick layer of a special rubber (insulator).

The acoustic field induced by the bubbles is detected by the piezoelectric sensor.

PVDF: Polyvinylidene fluoride

Theoretical background

CaviMeter

Bubbles outside sensor produce MHZ signals attenuated by sensor outer shield

Cavitating bubbles inside sensor produce MHz signals detectable by PVDF film

Outputs of the CaviMeter:

DRIVING FIELD: acoustic signal at the fundamental frequency (operating frequency of the transducer).

Driving field (n) Display Band pass. Peak voltage 20-60 kHz level **BNC** out Input signal Cavitation level (θ) Display Band pass. Convert to 1,5-8 MHz **RMS Volts** Cavitation BNC out sensor

CAVITATION LEVEL:

acoustic signal produced by the collapse of the bubbles (takes place in the frequency range 1.5 and 8 MHz).

Experimental procedure

Fluid medium (cavitation erosion)

Distilled water (5 micron filtered) at 22±2 °C (Tank: 15 l)

ultrasonic industry association

Generation of Cavitation: Ultrasonic transducer, 20 kHz (Model 23820A; Processor P100/3-20).

Duration of Cavitation exposure: 900 to 3600 s

Erosion: assessed by mass loss under a strict protocol

Experimental procedure

ultrasonic industry association

Operating conditions:

Experiments operating conditions: conducted for two values of sonotrode-sample separation (λ) of the transducer horn with respect to the specimen, at a fixed value of the transducer displacement amplitude signal (δ):

Experiment #1:

[$\lambda = 0.5$ mm; $\delta = 43.5$ μ m]

Experiment #2:

 $[\lambda = 1.0 \text{mm}; \delta = 43.5 \ \mu\text{m}]$

Experimental procedure

Aluminium-Bronze Alloy investigated under erosion:

Specific mass (mg/mm³)	Brinell Hardness (HB)	Dimensions (mm)
8.90	170	20 x 20 x 3

- 1. Focused on the cavitation phenomenon

 Variation associated with measurement of

 cavitation level
- 2. Focused on the erosion phenomenon
- Mass loss
- Inspection of the specimen surface after erosion
- 3. Correlating cavitation with erosion resistance Cavitation level and Erosion rate

Experimental results

Focused on the cavitation phenomenon

Measurement of cavitation level

Focused on the cavitation phenomenon

Measurement of cavitation level Specimen: Al-bronce alloy; Transducer frequency: 20 Khz

Experiment #2 : [δ = 43.5 μ m; λ = 1.0 mm]

Trend: evaluated by the qui-square test

ultrasonic industry association

Focused on the cavitation phenomenon

							Experiment #1					Experiment #2		
Discrete intervals	$t_{in}(s)$	$t_f(s)$	$(t_f - t_{in})$	N _m	Q	χ2	Uniform or non-uniform Pattern?	Θ̄ (Volt)	<i>u_s</i> (%)	Q	χ2	Uniform or non-uniform Pattern?	θ̄ (Volt)	<i>u</i> _s (%)
1	0	900	900	60	5.73	11.34	Yes	0.223	2.2	10.83	13.28	Yes	0.240	1.5
2	900	1800	900	60	8.6	15.09	Yes	0.166	1.1	4.4	15.09	Yes	0.262	1.2
3	1800	3600	1800	30	38.33	21.7	No	0.195	1.8	22.22	16.81	No	0.315	1.4
4	3600	7200	3600	60	27.5	16.81	No	0.178	1.2	14.8	15.09	Yes	0.361	0.9
5	7200	10800	3600	60	18.53	11.34	No	0.148	0.7	24.5	13.28	No	0.306	3.3
6	10800	13500	2700	45	9.56	13.28	Yes	0.183	0.8	12.51	11.34	No	0.330	2.6
7	13500	17100	3600	60	24.5	13.28	No	0.134	0.7	6.4	15.09	Yes	0.392	2.4
8	17100	20700	3600	60	9.5	13.28	Yes	0.174	1.1	12.83	13.28	Yes	0.274	1.7
9	20700	24300	3600	60	22.8	15.09	No	0.195	0.8	31.8	15.09	No	0.232	1.1
10	24300	27900	3600	60	3.8	15.09	Yes	0.201	2.4	10.6	15.09	Yes	0.227	0.9
11	27900	28800	900	60	4.17	16.81	Yes	0.198	0.6	15	13.28	No	0.304	0.8
			Total Number of measurements N _m	615										

 $N_m = Number\ of\ measuring\ point$ $Q = Statistics\ of\ the\ qui-square\ test$ $X^2 = value\ of\ qui-square\ table$ $If\ X^2 > Q$, the cavitation measuring follow a uniform pattern

$$u_S = \sqrt{\sum_{i=0}^{N_m} \frac{\left[y(x_i) - y_i\right]^2}{N_m - z - 1}}$$
; in this equation: (u_S a measure of uncertainty)

 $y(x_i) = \theta(t_i)$ = Adjusted value of the cavitation level $y_i = \theta_i$ = Measured value of the cavitation level $z = Degree of polynomial adjustment <math>(y(x_i))$

Focused on the cavitation phenomenon

							Experiment #1					Experiment #2		
Discrete intervals	t_{in} (s)	$t_f(s)$	(t_f-t_{in})	N _m	Q	χ2	Uniform or non-uniform Pattern?	θ̄ (Volt)	<i>u_s</i> (%)	Q	χ2	Uniform or non-uniform Pattern?	$ar{ heta}$ (Volt)	<i>u</i> _s (%)
1	0	900	900	60	5.73	11.34	Yes	0.223	2.2	10.83	13.28	Yes	0.240	1.5
2	900	1800	900	60	8.6	15.09	Yes	0.166	1.1	4.4	15.09	Yes	0.262	1.2
3	1800	3600	1800	30	38.33	21.7	No	0.195	1.8	22.22	16.81	No	0.315	1.4
4	3600	7200	3600	60	27.5	16.81	No	0.178	1.2	14.8	15.09	Yes	0.361	0.9
5	7200	10800	3600	60	18.53	11.34	No	0.148	0.7	24.5	13.28	No	0.306	3.3
6	10800	13500	2700	45	9.56	13.28	Yes	0.183	0.8	12.51	11.34	No	0.330	2.6
7	13500	17100	3600	60	24.5	13.28	No	0.134	0.7	6.4	15.09	Yes	0.392	2.4
8	17100	20700	3600	60	9.5	13.28	Yes	0.174	1.1	12.83	13.28	Yes	0.274	1.7
9	20700	24300	3600	60	22.8	15.09	No	0.195	0.8	31.8	15.09	No	0.232	1.1
10	24300	27900	3600	60	3.8	15.09	Yes	0.201	2.4	10.6	15.09	Yes	0.227	0.9
11	27900	28800	900	60	4.17	16.81	Yes	0.198	0.6	15	13.28	No	0.304	0.8
			Total Number of measurements $N_{\rm m}$	615										

The Chi-square statistical treatment of instantaneous measurements indicates the existence of non-uniform distributions of the cavitation level.

Focused on the cavitation phenomenon

Experiment #1 (λ = 0.5 mm):

- 6 of 11 accumulative time interval kept a uniform distribution based on statistical analysis (chi-square test)
- Maximum variation associated with measurement of cavitation level: 0.0049 V
- Cavitation level average: 0.181 V

Experiment #2 (λ = 1.0 mm):

- 6 of 11 accumulative time interval kept a uniform distribution based on statistical analysis (chi-square test)
- Maximum variation associated with measurement of cavitation level: 0.0101 V
- Cavitation level average : 0.295 V

Change of λ from 0.5 mm to 1.0 mm (δ kept constant):

- No significant influence on the distribution of the cavitation Level.
- Maximum variation associated with measurement of cavitation level: increased from 2.7% to 3.4%.
- 62% influence on the cavitation level average.

Focused on the erosion phenomenon

Gap effect

For $\lambda = 0.5$ mm, the bubbles are confined within the gap. The bubbles spread to the edges as λ increases.

Surface aspect of the aluminum-bronze alloy, before and after exposure to erosion

ultrasonic

powering sound ideas

industry association

ultrasonic industry association

3. Correlating cavitation with erosion resistance

 $\bar{\theta}_{\lambda=0.5\;mm} < \bar{\theta}_{\lambda=1.0\;mm}$ (more bubbles emitting in between the gap in $\lambda=1.0\;mm$)

 $\bar{\theta}$ = Cavitation level average

 $\lambda =$ Sonotrode-sample separation

*eroded surface may not affect the cavitation level average (new experiments with others materials are been doing to verify this)

Conclusions

- The experimental apparatus allowed the evaluation of cavitation during erosion tests performed with aluminum-bronze alloy.
- The study illustrated (quantitatively) the **influence induced by the** λ **parameter**. The results of the experiments showed that variation of λ (λ = 0.5 mm and λ = 1.0 mm) impacts 1.5 % on the mass loss of aluminumbronze alloy.
- Results confirmed that over a similar timescale, the higher the erosion rate the higher the mass loss.
- Even though the study may suggest that the **presence of the eroded** specimen in the **cavitation field** may be held responsible for non-uniform distributions of the cavitation level, further experiments involving other engineering materials offering different resistance to erosion might be welcome to correlating inertial acoustic cavitation emissions with material erosion resistance.

Automation of the experiments

To reduce associated errors and to improve data acquisition procedure.

Implementation of new operation conditions

By increasing transducer amplitude (δ) and displacement (λ) of the transducer horn wrt specimen.

Implementation of new experiments

To express measurement results of cavitation in terms of the basic principle associated with the phenomenon of cavitation.

Main References

- [1] CHOI, J.; JAYAPRAKASH, A.; CHAHINE, G. Scaling of cavitation erosion progression with cavitation intensity and cavitation source. Wear, v. 278, p. 53-61, MAR 8 2012 2012. ISSN 0043-1648
- [2] DA SILVA, F. et al. Cavitation erosion behavior of ion-nitrided 34 CrAlNi 7 steel with different microstructures. Wear, v. 304, n. 1-2, p. 183-190, JUL 15 2013 2013. ISSN 0043-1648.
- [3] Ibanez I., MSc Dissertation, Measurement and influence of cavitation induced by ultrasonic on erosion of engineering materials (in Portuguese), Postgraduate Programme in Metrology (PósMQI), Rio de Janeiro, RJ, BRAZIL, 2014.
- [4] Standard Test Method for Cavitation Erosion Using Vibratory Apparatus ASTM: 20 p. ASTM G32, 2010.

Main References

- [5] ZEQIRI, B. et al. A novel sensor for monitoring acoustic cavitation. Part I: Concept, theory, and prototype development. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, v. 50, n. 10, p. 1342-1350, OCT 2003 2003. ISSN 0885-3010.
- [6] KING, D. C. Sonochemical analysis of the output of ultrasonic dental descalers, 2010. 156 (PhD Thesis). Chemistry, University of Bath, UK [7] YOUNG, F. R. 1989. Cavitation, McGraw-Hill.
- [8] TIONG, J. T. Sonochemical and ultrasonic output analyses on dental endonosonic instruments, 2012. 299 (PhD Thesis). Chemistry, University of Bath, UK.
- [9] HODNETT, M.; ZEQIRI, B. Toward a reference ultrasonic cavitation vessel: Part 2-investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasonic field. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, v. 55, n. 8, p. 1809-1822, AUGUST 2008. ISSN 0885-3010.

Thank you!

