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 K&S is the leading MFG of semiconductor wire bonding equipment 

 The transducer delivers energy to a capillary tool for welding tiny wires 

 Patented single piece “Unibody” design is ideal for research studies 

 Portability across 100’s of machines required for same customer device 
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Motivation for the Research 
 The displacement gain is the most important performance parameter for power 

ultrasonic transducers typically used for welding or cutting 
 It controls the proportional relationship between the displacement of the tool and the voltage or 

current input to the transducer, a key process parameter 

 Due to aging effects of the PZT8 piezoceramics typically used in these 
transducers, and other variables such as gradual preload loss or tool clamp 
wear, the displacement gain can drift over time causing a shift in process and 
loss of machine-to-machine portability in mass production environments 

 The “re-calibration” of the displacement gain usually involves a time consuming 
procedure of standardized controlled tests, and/or measurements using an 
expensive device such as a laser vibrometer 
 However, elementary engineering vibrations theory suggests that the displacement gain should be 

proportional to the static displacement (i.e., 0 Hz or DC) and the mechanical quality factor “Qm” at 
resonance derived from a simple Bode plot, which is already familiar to most transducer designers 

 This research investigates the methods for obtaining the mechanical quality 
factor from Bode plots (e.g., constant current or constant voltage sweeps), and 
ring-down techniques using logarithmic decrement, based on their predictability 
for determining the displacement gain 
 The investigation focuses solely on welding transducers for semiconductor wire bonding which 

employ common hard PZT8 piezoelectric materials 

 Several other metrics are investigated such as impedance, capacitance and electro-mechanical 
coupling factor 

 The experimental and theoretical research methods include equivalent circuits, 
Bode plots, mechanical analogies and laser vibrometry 
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Definition of Qm (Mechanical Quality Factor) 

 Based on damped single DOF spring mass (SM) system 
 For forced response F(t) at static xs (F0 /Ks, ω = 0) and resonant xr (ω = ωr) displacements: Qm =  xr /xs 

 For logarithmic decrement δ of free response ring-down of successive amplitudes: Qm = 1/2ζ = ωrm/cd 

 Based on energy balance of a damped vibrating system at resonance fr 
 Qm = 2π  x energy stored  in each cycle / energy dissipated in each cycle 

 Qm = 2πfr x energy stored  /  power loss 

 Based on Bode plot near resonance at half-power -3dB bandwidth for transducer 
 Qm = fr / Δf = fr / ( f2 – f1 )   (Also called QA based on IEEE standard 176-1987) 

 Based on the admittance loop of equivalent RLC circuit of ultrasonic transducer 
 Qm = ωsI

2X / I2R  = ωsL / R = 1 / ωsCR  (For reactance X, ZC = -1/jωC, ZL= jωL, at ωs ZC = -ZL, ωs = 2πfs ) 

 Qm = VL / VR = VC / VR   (voltage drops at ωs) 
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Definition of Displacement Gain 
 The displacement gain is the linear relationship between the displacement of 

the tool (e.g., via laser vibrometer) and the voltage or current input to the 
transducer at the resonant operating mode 
 Expressed as either Voltage Gain (VG) or Current Gain (CG), these are the most important 

performance parameters for power ultrasonic transducers used in welding or cutting 

 Most resonant phase-lock-loop (PLL) control systems work in either constant 
current (via CG) or constant voltage (via VG) mode (with C0 compensation) 
 Constant current (CC) has the advantage of being insensitive to transducer impedance 

 Constant current mode maintains a constant tool displacement (i.e., velocity) during resonant 
operation resulting in more tool force being applied to the work as stiffness increases 

 Constant voltage (CV) mode maintains a constant force between the tool and the work during 
resonant operation, resulting in less tool displacement as stiffness increases 

 Both the CG and VG can drift over time due loss of preload, or aging effects (via 
heating, stress, time, etc.) of the piezoelectric stack requiring re-calibration 
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Methods for Measuring Qm 
 Constant voltage (CV) sweep Bode plot using network analyzer with 10X amplifier 

 Pros: The fastest and easiest way to measure Qm using the built-in network analyzer (NA) equivalent 
circuit functions, or by measuring Qm directly from admittance functions (a.k.a. QA via IEEE) 

 Cons: Current highly variable during sweep and suffers from “softening effects” at higher 
current/velocities causing non-symmetric admittance peak between f1 and f2 (w/ parasitic modes too) 

 Variables: Sweep voltage, sweep width and sweep time 

 Ratio between quasi-static us (at 1kHz) and PLL resonant ur displacements at 
constant voltage (can not drive high current for 1kHz off-resonance us) 
 Pros: The most consistent and repeatable measurements for Qm 

 Cons: Difficult to implement in-process due to expensive equipment (e.g., laser vibrometer), and 
measurement must be made at constant voltage PLL making it sensitive to transducer impedance 

 Variables: Voltage level and PLL fire or burst time 
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Methods for Measuring Qm (Con’t) 

 Constant current sweep Bode near fr using phase offsets with PLL control system 
 Pros: Data taken at real operational conditions with actual current levels at fr,  f1 and f2 

 Cons: Data can be very noisy due to off-resonance heating at f1 and f2 (especially with higher 
impedance transducers) and random scatter from on/off PLL fires, which may require averaging 
from slight drifts in fr.  Can only be done in close vicinity of resonance fr, since it will require higher 
voltage headroom for PLL at  f1 and f2 for a given current.  Motional current adjustment vs frequency 
may be required due parasitic loss through C0 (usually small) 

 Variables: PLL fire or burst time, sweep width and current level.  Re-establish fr @ 0 phase after 
every sweep point plotting Δfr  with each phase offset (e.g., fr - f1 or f2 - fr), or use the same fr @ 0 
phase for all sweep points plotting actual frequency f  at each phase offset (former used below) 
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Methods for Measuring Qm (Con’t) 

 Logarithmic decrement δ of ring-down after fr resonant PLL drive via relay switch 
 Pros: Very flexible in-situ method that can be easily implemented at operating voltage or current, 

but also works with velocity via laser vibrometer.  Can be implemented in three configurations, i.e., 
open circuit (OS), short circuit (SC) or load resistor (LR), allowing for different analytical models and 
analysis methods  

 Cons: Data can be noisy and difficult to analyze since Qm is not constant during measurement as 
voltage or current decays in piezo stack (Qm typically increases with decreasing current).  Relay 
triggering can cause frequency beating type artifacts due to slow or misaligned open and close 
times, creating burst ring-down transitions of both open and closed circuit modes at the same time,  
and DC shifts 

 Variables: PLL current or voltage level, PLL time, relay trigger and ring-down range (e.g. Istart, Iend) 
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Methods for Measuring Qm (Con’t) 

Details: Logarithmic decrement δ in short circuit using replay switch & current probe 
 Relay Ports: Transducer→ IN, PLL→ 2 and Short to Isolated Ground with Current Probe→ 1 

 Frequency generator TTL input to Mode Select at 0.1Hz frequency (5V-Port 1, Ground-Port 2) 

 Potentiometer (1000Ω) for each PhotoMOS adjusted to align PLL turn-off time with SC turn-on time 

 PLL current set to 100mA with SC ring-down recorded over 70-50mA  range (i.e., Istart – Iend) 
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Equivalent Circuit Analysis for δ 
 The logarithmic decrement δ can be implemented in three modes (OC, SC, LR) 

 For resonant PLL drive iPLL ≈ imo.  For open circuit  (OC) ring down ico = -imo, so only voltage can be 
measured for predicting Qm at parallel mode fp anti-resonance.  For short circuit (SC) ring down ico = 
0, so only current can be measured for predicting Qm at series mode fs  resonance.  For load resistor 
(LR) ring down, both the voltage and current can be measured at ring-down between fs and fp 

 For the PLL drive (2-Relay) the circuit resonates in the series mode ωs when the 
reactance from the L and C cancel, so we can assume  iPLL ≈ imo = i 

 

 

 

 

 

 

 

 

 

 For the SC ring down (3-Relay), we solve the homogenous solution of  with the 
initial conditions from the  
 
 

 For OC ring down (1-Relay), the circuit resonates in the parallel mode ωp with 
initial conditions from , where imo = -ico = i.                                                
Solution is given by  with ― ― ― ― ― ― → 
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Numerical Data Analysis for δ 
 
 Logarithmic decrement analysis performed in Mathcad (Mathcad function) 

 Save waveform data from each channel from Tektronix scope into Mathcad format 

 Plot data to truncate for the desired ring-down range of Istart and Iend (e.g., 70 to 50 mA) 

 Perform data smoothing (ksmooth) and apply cubic spline approximation (cspline, interp) 

 Find all actual minimas and maximas by iterating through data to separate out local ones near peaks 

 Use least squares curve fit approximation of peaks with function F(x)=Aexp(-bx) (genfit) to determine ζ  
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Displacement Gain Vs. Qm Derivation 
Example Derivation (m >> mass of piezo rod, L < λ/4)  
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Experimental Results 
 Summary of experimental data for 10 random transducers (amplitudes p-to-p) 

 

 

 

 

 

 

 Summary of predictions for Current Gain (CG) and Voltage Gain (VG) 
 The static displacement us is very consistent across all transducers, so the measurement for de only 

needs to be done infrequently after transducer is placed in service (or just once before) 

 Alternately, the effective E-mech coupling ke from NA CV Bode is also an excellent predictor for us 
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Measured Displacement at 100V (μm)

E-mech Coupling ke Vs us (100V)

E-Mech Coupling Vs Static Displ

Linear (E-Mech Coupling Vs Static Displ)

Transducer 

Serial # μm/mA (CG ) μm/V (VG ) CG VG CG VG CG VG CG VG

031614 0.00472 0.16046 0.00558 0.18764 0.00558 0.18406 0.00552 0.14163 0.00562 0.22238

SF19315L 0.00502 0.23987 0.00592 0.29262 0.00591 0.28221 0.00588 0.23400 0.00597 0.48004

SF19319L 0.00499 0.28288 0.00582 0.32254 0.00584 0.38359 0.00581 0.30933 0.00586 0.48350

SF19331L 0.00487 0.21955 0.00619 0.28072 0.00621 0.31303 0.00614 0.21195 0.00619 0.27556

SF19327L 0.00482 0.21088 0.00616 0.29099 0.00617 0.31723 0.00612 0.22731 0.00609 0.19923

SF19312L 0.00479 0.24176 0.00611 0.32715 0.00610 0.30777 0.00605 0.23324 0.00611 0.31793

SF20753L 0.00562 0.10794 0.00647 0.13175 0.00643 0.11975 0.00637 0.10480 0.00653 0.15384

SF23402L 0.00592 0.14566 0.00694 0.18719 0.00684 0.14181 0.00687 0.15073 0.00688 0.15814

SF22980L 0.00597 0.15860 0.00698 0.19018 0.00695 0.17327 0.00690 0.14951 0.00702 0.22105

SF20752L 0.00559 0.16758 0.00672 0.23025 0.00658 0.14181 0.00666 0.18340 0.00663 0.16644

Measured Displacement Gains NA CV Bode Q m PLL CC Bode Q m u r /u s  Q m SC Ring-Down Q m

Transducer 

Serial # C 0 DF f r (Hz) Z (Ω) k e Q m I pll (mA) Q m V s (V) f (Hz) u s (μm) V r (V) I r (mA) u r (μm) Q m I start (mA) I end (mA) Q m μm/mA μm/V μm2/W

031614 1721 0.004 121569 29 0.2167 524 50 514 100 1000 0.036 1.518 50 0.215 396 70 50 621 0.00472 0.16046 0.73683

SF19315L 1710 0.004 120963 19 0.2107 836 50 806 100 1000 0.035 0.953 50 0.223 668 70 50 1371 0.00502 0.23987 1.18574

SF19319L 1705 0.004 122372 16 0.2094 943 50 1121 100 1000 0.034 0.750 50 0.232 904 70 50 1413 0.00499 0.28288 1.42318

SF19331L 1691 0.004 121591 20 0.2063 802 50 894 100 1000 0.035 1.038 50 0.220 605 70 50 787 0.00487 0.21955 1.05099

SF19327L 1692 0.004 121378 20 0.2071 831 50 906 100 1000 0.035 1.012 50 0.230 649 70 50 569 0.00482 0.21088 1.01881

SF19312L 1677 0.004 121206 19 0.2094 934 50 879 100 1000 0.035 0.948 50 0.221 666 70 50 908 0.00479 0.24176 1.14117

SF20753L 1635 0.003 122725 48 0.1817 460 50 418 100 1000 0.029 2.500 50 0.262 366 70 50 537 0.00562 0.10794 0.59916

SF23402L 1561 0.003 121816 35 0.1819 653 50 495 100 1000 0.029 1.849 50 0.279 526 70 50 552 0.00592 0.14566 0.85943

SF22980L 1551 0.003 120878 36 0.1877 629 50 573 100 1000 0.030 1.875 50 0.280 494 70 50 731 0.00597 0.15860 0.93089

SF20752L 1637 0.003 123172 26 0.1801 804 50 495 100 1000 0.029 1.349 50 0.247 640 70 50 581 0.00559 0.16758 0.93418

PLL CC BodeLCR  Meter (1kHz) NA CV Bode w/ 10X Amp Static Displ. Test Resonant Displacement Test SC Ring-Down Test Displacement Gains & Power
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Experimental Results (Con’t) 

 Regression analysis of measured data vs. predicted gain data for various Qm methods on 10 random 
transducers.  What is most important is the relative change or slope, not the absolute value 
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Experimental Results (Con’t) 

 Regression analysis of measured data vs. predicted gain data for various Qm methods on 10 random 
transducers.  What is most important is the relative change or slope, not the absolute value 
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R² = 0.994
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Experimental Results (Con’t) 

 Predicted gain data for one transducer subjected to multiple heat-treatments 
 Old data from previous study where only Qm from NA CV Bode plot was available (no us data either) 

 Static displacement us was estimated based on E-mech coupling ke from Bode plots 
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For Constant 
us = .029 μm 
for all points 

Transducer Heat

Serial # Treatment (°C) C 0 DF f r (Hz) Z (Ω) k e Q m V s (V) f (Hz) u s (μm) μm/mA μm/V CG VG

SF16655L-2 70 1576 0.004 122575 20 0.1956 834 100 1000 0.033 0.00509 0.21625 0.00699 0.27874

SF16655L-3 75 1682 0.005 122475 23 0.1986 719 100 1000 0.034 0.00490 0.19116 0.00643 0.24399

SF16655L-4 80 1645 0.004 122675 25 0.1904 766 100 1000 0.033 0.00504 0.20016 0.00684 0.24921

SF16655L-5 85 1664 0.004 122700 25 0.1854 845 100 1000 0.032 0.00518 0.18705 0.00695 0.26769

SF16655L-8 100 1690 0.003 122950 27 0.1738 925 100 1000 0.030 0.00556 0.19088 0.00728 0.27470

SF16655L-10 110 1653 0.003 123275 30 0.1585 833 100 1000 0.027 0.00626 0.16889 0.00805 0.22560

SF16655L-11 110 1615 0.004 123350 31 0.1574 830 100 1000 0.027 0.00646 0.16404 0.00828 0.22323

NA CV Bode Q mLCR  Meter (1kHz) NA CV Bode w/ 10X Amp Static Displ. Test Displacement Gains
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Conclusions 
 All four methods (i.e., NA/PLL Bode, ur /us & δ) presented for Qm provided good 

agreement to experimental results for predicting relative change in VG and CG 
 Since the Qm can vary greatly with amplitude of vibration, velocity, current, voltage and temperature, 

only the relative change is important for prediction of VG and CG 

 This wire bonding transducer application may not accentuate the different Qm methods, since it is 
fairly low duty cycle (20%), and is driven at the lower end of power capability for PZT8 (for stability) 

 The VG is mostly correlated to Qm, but the CG is mostly influenced by ke (not Qm) 

 The ur /us method is most accurate for VG at any power level, but is difficult to 
implement in-process due to expensive in-situ equipment such as vibrometer 

 The NA CV Bode method is good predictor of CG and VG at low power, but has 
known issues at higher amplitudes due to softening effects causing distortion 
 Excellent results were still seen with the NA CV Bode method for predicting CG changes after 

multiple heat-treatments, but the VG is less correlated with just estimates for us based on ke 

 The PLL CC Bode method is a good predictor of CG and VG at all power levels, 
but has fr drift issues due to off-resonance heating (averaging helps) 

 The ring-down δ method is a good predictor for CG, and can also be used at any 
power level 
 It is also the easiest to implement in-process under actual bonding conditions with ke from CV Bode 

 However, it was the least accurate for VG due to random variation in the Qm measurement caused by 
beating effects from relay switch (still working on improving this) 

 The static displacement us was found to be highly correlated to ke 

 This greatly simplifies the requirements for measuring us over time for VG prediction 

 The CG is not predicted well by VG*Z, which is an indication of higher order 
effects from the E-mech coupling ke 
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